POENTIAL FOR GROUND-WATER CONTAMINATION FROM MOVEMENT OF WASTEWATER THROUGH THE UNSATURATED ZONE, UPPER MOJAVE RIVER BASIN, CALIFORNIA

By Amjad M.J. Umari, Peter Martin, Roy A. Schroeder, Lowell F.W. Duell, Jr., and Ronald G. Fay

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 93-4137

Prepared in cooperation with the CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD—LAHONTAN REGION and the MOJAVE WATER AGENCY

7208-13

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For sale by the U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Denver Federal Center Denver, CO 80225

For additional information write to: District Chief U.S. Geological Survey Federal Building, Room W-2233 2800 Cottage Way Sacramento, CA 95825

CONTENTS

Abstract 1
Introduction 2 Purpose and scope 2
Acknowledgments 2 Description of study area 2 General features 2 Geohydrology 5 Geologic units 5 Recharge and discharge 6 Ground-water levels and movement 8
Ground-water quality 9
Sampling and analysis 11 Site selection 11
Test drilling and instrumentation of study sites 11
Analysis of soil cores and pore water 15
Physical analyses 15
Chemical analyses 17
Microbiological analyses 25
In situ monitoring in the unsaturated zone 26 Soil-moisture content 26
Pore-water quality 27
Analysis of tapwater and wastewater 40
Analysis of shallow-ground-water quality 40
Movement of wastewater through the unsaturated zone 48
Moisture-content profiles 48
Neutron moisture logs 49 Suction lysimeters 51
Concentration of selected wastewater constituents in the unsaturated zone 54
Nitrogen 54
Nitrogen cycle 55
Septic-tank wastewater 55
Nitrogen concentrations and transformations 59
Denitrification 67 Total bacteria and fecal coliforms 71
Other contaminants in wastewater 72
Potential for ground-water contamination 73
Summary and conclusions 79
References cited 81
FIGURES
1. Map showing location of study area 3
2. Photograph showing Mojave River channel, looking north toward study area 3
 3. Major land uses and sewered parts of study area 4. Photograph showing a newly constructed septic tank and seepage pit 5
5. Map showing geology of study area 7
6. Geologic section through study area 8
7. Graphs showing water-level altitude of selected wells 9

- 8,9. Maps showing:
 - 8. Chemical character of water from selected wells 10
 - 9. Location of monitoring sites 12
- 10,11. Diagrams showing:
 - 10. Typical suction lysimeters, installation, and sampling method 17
 - 11. Construction of a typical multiple-well monitoring site 43
- 12-14. Graphs showing:
 - 12. Temporal changes in soil-moisture content and vertical variation in grain size at selected residential sites 51
 - 13. Vertical variation in selected physical properties and in concentrations of selected chemical and biological constituents at residential sites 60
 - 14. Influence of selected parameters on model-computed nitrate concentrations in ground water 77

TABLES

- 1. Dissolved-solids and nitrate concentrations in samples from selected wells in the study area 11
- 2. Location and characteristics of residential wastewater-disposal study sites 13
- 3. Location and characteristics of ground-water monitoring sites 14
- 4. Suction-lysimeter depth and lateral distance from seepage pit 16
- 5. Summary of monitoring devices installed and analyses completed at each study site 18
- 6. Grain-size distribution for core samples at study sites 19
- 7. Moisture content and pore-water chemical concentration determined from cores at residential study sites 22
- 8. Fecal coliform and total bacteria (from standard plate count) for core samples at study sites 26
- 9. Nitrifying and nitrate-reducing bacteria for core samples from Cheyenne-I and Cajon sites 27
- 10. Chemical analyses of samples from suction lysimeters 28
- 11. Chemical analyses of tapwater at residential study sites 41
- 12. Chemical analyses of wastewater at residential study sites 42
- 13. Fecal coliform and total bacteria (from standard plate count) in wastewater from septic tanks and seepage pits 43
- 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites 43
- 15. Comparison of wastewater vertical-movement rates determined from neutron moisture logs and from suction lysimeters 50
- 16. Calculated increase (or decrease) in concentration of chemical constituents in water during household use 56
- 17. Median concentrations of selected constituents in tapwater, septic-tank, seepage-pit, and suctionlysimeter samples 57
- 18. Nitrogen-isotope data from selected suction lysimeters and monitoring wells, 1989–90 69
- 19. Specific conductance, concentrations of selected chemical constituents, and nitrogen-isotope ratios in samples from lysimeters at Cajon residential site, 1991-93 71
- 20. Organic priority pollutants detected in wastewater samples from septic tanks and seepage pits 73
- 21. Extractable organic compounds, other than priority pollutants, tentatively identified in wastewater samples 74
- 22. Parameters and values used in the model 76

CONVERSION FACTORS, VERTICAL DATUM, ABBREVIATIONS, AND WELL-NUMBERING SYSTEM

Conversion Factors

Multiply	Ву	To obtain
acre	0.4047	hectare
acre	4,047	square meter
acre-foot (acre-ft)	1,233	cubic meter
acre-foot (acre-ft)	0.001233	cubic hectometer
acre-foot per year (acre-ft/yr)	0.001233	cubic hectometer per year
cubic foot per day (ft ³ /d)	0.02832	cubic meter per day
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
foot squared per day (ft ² /d)	0.09290	meter squared per day
gallon per day (gal/d)	0.003785	cubic meter per day
inch (in.)	25.4	millimeter
mile (mi)	1.609	kilometer
square mile (mi ²)	259.0	hectare
square mile (mi ²)	2.590	square kilometer

Temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation:

$$^{\circ}F = 1.8(^{\circ}C)+32.$$

Vertical Datum

Sea Level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929— a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Abbreviations

CFU/g: Colony-forming units per gram

CFU/100 mL: Colony-forming units per 100 milliliters

g: gram mL: milliliter

μg/kg: microgram per kilogrammg/L: milligram per literμg/L: microgram per liter

μS/cm: microsiemen per centimeter at 25 degrees Celsius

μm: micrometer
m: meter

m/h: meter per hour

Well-Numbering System

Wells and springs are identified and numbered according to their location in the rectangular system for the subdivision of public lands. Identification consists of the township number, north or south; the range number, east or west; and the section number. Each section is divided into sixteen 40-acre tracts lettered consecutively (except I and O), beginning with "A" in the northeast corner of the section and progressing in a sinusoidal manner to "R" in the southeast corner. Within the 40-acre tract, wells are sequentially numbered in the order they are inventoried. The letter "S" inserted before the sequence number indicates a spring. The final letter refers to the base line and meridian. In California, there are three base lines and meridians; Humboldt (H), Mount Diablo (M), and San Bernardino (S). All wells and springs in the study area are referenced to the San Bernardino base line and meridian (S). Numbers consist of 15 characters and follow the format 004N003W15C01S. In this report, well numbers are abbreviated and written 4N/3W-15C1. Wells in the same township and range are referred to by only their section designation, 15C1. The numbering system for lysimeters follows that for wells, with an addition: The letters "LYS" are added at the end (for example, 5N/3W-16E1LYS). The following diagram shows how the number for well 4N/3W-15C1 is derived.

POTENTIAL FOR GROUND-WATER CONTAMINATION FROM MOVEMENT OF WASTEWATER THROUGH THE UNSATURATED ZONE, UPPER MOJAVE RIVER BASIN, CALIFORNIA

By Amjad M.J. Umari, Peter Martin, Roy A. Schroeder, Lowell F.W. Duell, Jr., and Ronald G. Fay

Abstract

Septic-tank wastewater disposed 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley.

As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisture from suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where the nitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the

residual nitrate with an isotope-separation factor of about -10 permil.

Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixed instantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet.

Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants

were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.

INTRODUCTION

About one-quarter of all inhabitants of the United States dispose of sewage by means of onsite septic systems (Brown and others, 1979) that have the potential to contaminate the receiving waters (Boyle and Otis, 1979). The main cause of failure of these systems has been variously reported to be poor operation and maintenance (Viraraghavan, 1986), unsuitable soils (Duda and Cromartie, 1982), and excessive septic-tank density (Yates, 1985). These conditions exist locally at some residences and regionally in some parts of the upper Mojave River Basin.

Disposal of domestic wastewater from 46,000 residences in the upper Mojave River Basin (Frank Merrill, A1-Desert Septic Systems, Inc., written commun., 1991) is predominantly by discharge of septic-tank effluent to seepage pits (dry wells) from which the wastewater percolates into the unsaturated zone. Rapid population growth in this high-desert area northeast of Los Angeles has led to concern, particularly because alternative public-water supplies are not currently available, that these wastewater-disposal practices could contaminate or pose an increasing threat of contamination to the sole-source aquifer that underlies the area.

To respond to this concern, the U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board—Lahontan Region and the Mojave Water Agency, began a study in 1988 that had the following objectives:

- 1. To determine the rate of movement of wastewater through the unsaturated zone and whether wastewater reaches the water table.
- 2. To determine whether constituents in the wastewater, primarily nitrogen and fecal-coliform bacteria, reach the water table.
- 3. To evaluate the current and potential effects of wastewater contaminants, particularly nitrate, on ground-water quality in the upper Mojave River Basin.

PURPOSE AND SCOPE

This report presents results of a study on the movement of septic-tank wastewater and associated

contaminants through the unsaturated zone at eight sites chosen to represent a range in (1) geohydrologic conditions, (2) years of seepage-pit operation, and (3) sewage-effluent loading as represented by six singlefamily and two multiple-family residences. The vertical rates of wastewater movement were estimated from neutron-probe data. Water-quality data in the unsaturated zone were obtained from soil cores and from suction lysimeters. Ground-water-quality data were obtained from suction lysimeters (where they were installed below the water table) and from shallow monitoring wells installed in a part of the study area containing numerous residences that dispose of wastewater in seepage pits. Available ground-water-quality data from 20 wells in the study area also are presented in this report.

The last samples collected as part of the original agreement under which this study was funded were taken in January 1990. Data from additional sampling of lysimeters at three sites (Cajon, Vasquez, and Cheyenne-I) were obtained after September 1991 with the financial support of the U.S. Geological Survey's Regional Aquifer-System Analysis study in southern California desert and coastal basins, and selected results are included in this report. Additional data and discussion of results from the ongoing sampling at the Cajon site are published in Schroeder and others (1993).

ACKNOWLEDGMENTS

Holes drilled at the eight wastewater-disposal sites were on private residences, and thus the authors are indebted to the homeowners. The authors also thank the members of a Technical Advisory Committee consisting of local citizens, business owners, and government officials for helpful guidance, and especially the Apple Valley Ranchos Water Company and Hi-Desert Septic Systems for providing space to store drilling equipment and supplies and providing buildings for use as field laboratories.

DESCRIPTION OF STUDY AREA

GENERAL FEATURES

The upper Mojave River Basin is in the Mojave Desert region of southern California, about 80 miles northeast of Los Angeles (fig. 1). The study area includes the part of the upper Mojave River Basin adjacent to the Mojave River that locally is referred to as "Victor Valley." The approximately 180-mi²

Figure 1. Location of study area.

study area includes the communities of Victorville, Apple Valley, and Hesperia.

The Mojave River, which bisects the study area, originates in the foothills of the San Bernardino Mountains and flows northward toward Victorville. In the upper Mojave River Basin, perennial streamflow occurs only in the mountains and near Victorville where a basin constriction created by shallow bedrock, locally referred to as "Narrows," causes ground water to discharge to the river. An aerial photograph of the dry river channel near the study area is shown in figure 2.

Figure 2. Mojave River channel, looking north toward study area.

The climate of the upper Mojave River Basin is typical of the arid high-desert region of southern California. It is characterized by low precipitation, low humidity, high summer temperatures, and strong winds at certain times of

Figure 3. Major land uses and sewered parts of study area.

the year (Hardt, 1971, p. 5). Average annual precipitation at Victorville is 5.1 in. (National Oceanic and Atmospheric Administration, 1989).

Land use in the study area is predominantly residential (fig. 3). Most of this residential development occurred in the 1980's, reflecting the inland

Figure 4. Newly constructed septic tank and seepage pit.

growth of the Los Angeles megalopolis. In 1990, the population of the upper Mojave River Basin was about 200,000 (California Regional Water Quality Control Board, written commun., 1991). Prior to the 1980's, most of the study area was undeveloped. Earlier, development of agricultural and residential areas occurred primarily along the Mojave River (California Department of Water Resources, 1967, p. 9).

Ground water historically has been the sole source of water in the upper Mojave River Basin. In the study area, water for municipal and industrial use is supplied by large-capacity supply wells. Water from these wells is delivered to individual residences and industrial sites by a series of pipelines. Only a few domestic wells exist in the study area.

Most of the study area is unsewered (fig. 3). The use of shallow leach fields to dissipate wastewater from septic tanks is not possible because of the pres-

ence of low-permeability caliche layers in most of the study area. Instead, the wastewater from septic tanks is discharged into deep seepage pits (dry wells). The seepage pits are typically about 5 ft in diameter, about 30 ft deep, and are lined with bricks or blocks with unmortared joints that allow rapid percolation of the wastewater into the unsaturated zone. A photograph of a newly constructed septic tank and seepage pit is shown in figure 4.

GEOHYDROLOGY

GEOLOGIC UNITS

The geologic units in the study area are grouped into two broad categories according to their water-bearing characteristics: non-water-bearing and water-bearing formations (California Department of Water Resources, 1967, p. 18).

The non-water-bearing formations include metamorphic and igneous rocks of pre-Tertiary age (basement complex) and sedimentary continental rocks of Tertiary age. These formations underlie the basin and form the surrounding mountains and hills (figs. 5 and 6). The Tertiary sedimentary rocks include some water-bearing units; however, yields from wells generally are low, and most of the water is of poor quality (California Department of Water Resources, 1967, p. 26).

The water-bearing formations of the upper Mojave River Basin resulted primarily from erosion of the surrounding mountains. These formations consist of gravel- to clay-size material and generally become more consolidated and less permeable with increasing depth. The water-bearing formations include younger alluvium of Holocene age, and old lake and lakeshore deposits, older alluvium, older fan deposits, landslide breccia, Shoemaker Gravel, and the Harold Formation of Pleistocene age (California Department of Water Resources, 1967).

The younger alluvium, as used in this report, includes the river deposits, dune sand, younger alluvium, and younger fan deposits mapped by the California Department of Water Resources (1967). These deposits generally are the most permeable of all the geologic units and, where saturated, yield large quantities of water to wells. In the study area, the younger alluvium is saturated only beneath the Mojave River channel (fig. 6). Throughout the remainder of the study area, the younger alluvium is only a veneer overlying older materials.

Old lake and lakeshore deposits are exposed on both sides of the Mojave River near Victorville (fig. 5). The old lake deposits consist predominantly of silt and clay and are generally less than 75 ft thick. Where saturated, the old lake deposits yield little water to wells, and where unsaturated, percolation rates are very low. The lakeshore deposits are remnants of sand and gravel bars of Late Pleistocene lakes (California Department of Water Resources, 1967, p. 23) and are generally permeable.

The older alluvium underlies most of the study area and ranges in thickness from a few feet to more than 250 ft beneath the Mojave River channel (fig. 6). The deposits consist of unconsolidated to consolidated, poorly sorted gravel, sand, silt, and clay. In the Hesperia area these deposits yield water freely to wells; however, in parts of Apple Valley the water-yielding characteristics of these deposits are poor. Caliche deposits near land surface in much of the area prevent the percolation of rainfall, and deep seepage pits extending below the caliche deposits must be constructed to discharge wastewater from septic tanks.

The older fan deposits are exposed (fig. 5) along the flanks of the highland areas. These partly consolidated deposits consist of poorly sorted gravel, sand, silt, and clay. Reported well yields from the older fan deposits are variable but generally are low (California Department of Water Resources, 1967, p. 24). As in the areas of older alluvium, the older fan deposits in places are cemented with caliche near land surface, requiring the installation of seepage pits to discharge wastewater from septic tanks.

The other water-bearing formations are well below the water table in the study area and have no effect on the movement of wastewater.

RECHARGE AND DISCHARGE

The principal source of natural recharge in the upper Mojave River Basin is precipitation in the San Bernardino Mountains south of the study area. Most of this recharge occurs as percolation of floodflows in the Mojave River and is estimated to average 40,000 acre-ft/yr for the period 1931-92 (G.C. Lines, U.S. Geological Survey, written commun., 1993). Smaller sources of recharge to the upper Mojave River Basin are mountain-front runoff from the San Gabriel Mountains (9,300 acre-ft/yr) and subsurface inflow from Lucerne Valley (250 acre-ft/yr) (Hardt, 1971). Direct infiltration of precipitation on the basin floor is considered negligible because, in most places, potential evapotranspiration greatly exceeds annual precipitation. In addition, the presence of shallow caliche deposits throughout much of the basin impedes the percolation of precipitation.

Discharge occurs naturally from the basin as evapotranspiration, streamflow (base flow), and subsurface outflow at the "Narrows" near Victorville, where a basin constriction caused by shallow bedrock forces ground water to the surface. Natural groundwater discharge, however, is significantly less than municipal and agricultural pumpage. Total pumpage from the upper Mojave River Basin in 1990 is estimated to have been 124,000 acre-ft (Jack Clark, Apple Ranchos Water District, written commun.,

EXPLANATION FOR FIGURE 5

Qya	UNCONSOLIDATED DEPOSITS (Quaternary)- Younger alluvium		CONTACT FAULT-Dashed where approximately located;
Qyf	Younger fan deposits		dotted where concealed; queried where uncertain
Qoi	Old lake and lakeshore deposits Older alluvium	A A'	LINE OF GEOLOGIC SECTION
Qof	Older fan deposits	LITTLE BEAVER	LYSIMETER HOLE AND NEUTRON LOGGING HOLE AND NAME
	CONSOLIDATED ROCKS (Pre-Tertiary)- Basement complex (igneous and metamorphic rocks)	KIOWA •	LYSIMETER HOLE(S) AND NAME
	Note: Qh and Tc units shown in figure 6 (geologic section) are not exposed at surface	APPLE RANCHOS ()	MULTIPLE-COMPLETION WELL AND NAME

1991). Historically, most of the pumpage was from the younger alluvium along the Mojave River channel. As development in the area has expanded, pumpage from the older deposits has increased. Part of the pumped water returns to the basin as irrigation return flows and septic-tank wastewater. Evapotranspiration is estimated to be 9,000 acre-ft/yr (Hardt, 1971, p. 43). Base flow was about 8,000 acre-ft/yr in 1990 (G.C. Lines, U.S. Geological Survey, written commun., 1992), and subsurface outflow at the "Narrows" is estimated to be 350 acre-ft/yr (Slichter, 1905, p. 63).

Figure 5. Geology of study area.

EXPLANATION

Figure 6. Geologic section through study area.

Recharge	Discharge
Mojave River 40,000 Mountain front	Pumpage 124,000 Evapotrans-
runoff 9,300	piration 9,000
Subsurface inflow 250	Base flow 8,000
	Subsurface out-
	flow 350
49,550	141,350

Loss = 91,800 acre-ft/yr if pumping return flows are ignored.

As stated above, septic-tank wastewater discharged to seepage pits installed to depths below the shallow caliche deposits decreases the net pumpage (total pumpage-returns) from the basin. In 1990, there were approximately 46,000 septic-tank systems in use in the upper Mojave River Basin area (Frank Merrill, Hi-Desert Septic Systems, Inc., written commun., 1991). Assuming an average septic-tank discharge of 70 (gal/d)/person (Bookman-Edmonston

Engineering, 1991), and 2.5 people per household, annual septic-tank wastewater discharge is estimated to have been 9,000 acre-ft/yr in 1990, equal to about 18 percent of the estimated natural recharge to the basin.

GROUND-WATER LEVELS AND MOVEMENT

In general, ground water adjacent to the Mojave River flows from south to north. East and west of the Mojave River, ground water flows toward the river. Pumping in Apple Valley has resulted in local water-level depressions (John S. Murk Engineering, Inc., and LeRoy Crandall and Associates, 1985, p. 3–11).

Depth to ground water generally increases from the center of the basin toward the surrounding mountain ranges and their upward-sloping alluvial fans. Depth to water in the study area ranges from less than 50 ft beneath the Mojave River to more than 400 ft below land surface at Hesperia, west of the river (fig. 6). In Apple Valley the depth to water ranges from 100 to 150 ft north of Bear Valley Cutoff

Figure 7. Water-level altitude of selected wells.

and from 150 to more than 400 ft south of Bear Valley Cutoff (fig. 5) (Subsurface Surveys, Inc., 1990, pl. 4).

Ground-water pumpage exceeds natural recharge to the basin, and water levels are declining throughout the study area (fig. 7). The water-level declines have been largest in the Apple Valley area (fig. 7), where water levels have declined by almost 50 ft since the early 1950's. Most of the observed water-level decline in the Apple Valley area has occurred since the rapid increase in residential development during the 1980's.

GROUND-WATER QUALITY

The chemical character of water from selected wells (on the basis of available data collected during 1978-90) is shown in figure 8. The water-quality diagrams in figure 8 depict the concentrations of major cations and anions, and give an approximate indication of total-ion content. The dissolved-solids concentration of samples from the wells shown in figure 8 is given in table 1.

Samples from wells adjacent to and west of the Mojave River generally have dissolved-solids concentrations less than 200 mg/L. Dissolved-solids concentration of samples from wells east of the river is dramatically higher, ranging from 113 mg/L (4N/3W-7P1), within 0.5 mi of the river, to 1,030 mg/L

(4N/3W-15C1), more than 3 mi from the river (fig. 8, table 1). The water-quality diagrams indicate that composition of the water also differs significantly. Most of the samples from wells east of the river contain much higher concentrations of chloride than do samples from wells adjacent to and west of the river. The distributions of dissolved-solids concentration and water composition are similar to those shown by California Department of Water Resources (1967, pl. 6) for 1967. This earlier study was completed prior to most of the development in the area and suggests that the source of the high dissolved-solids concentrations is geologic, rather than anthropogenic.

A gravity survey of the study area (Subsurface Surveys, Inc., 1990, pl. 3) indicates that the basement complex rises sharply toward land surface east of the Mojave River (fig. 6), underlying areas where dissolved-solids concentrations are observed to be high. The rapid rise in altitude of the basement complex suggests the presence of a fault that has uplifted the basement complex east of the Mojave River (fig. 6). In any case, the depth to the basement complex and the overlying continental deposits of Tertiary age (where they have not been removed by erosion) decreases rapidly east of the river. Therefore, wells east of the river could penetrate the lowpermeability continental deposits at shallower depths than wells west of the river. This observation is supported by Hardt (1971, fig. 8), who showed that transmissivity decreases sharply toward the mountains east of the Mojave River. As stated previously, the continental deposits contain water of poor quality and are presumed to be the source of the high dissolvedsolids concentrations east of the Mojave River.

Available nitrate data obtained from wells during 1978-90 are given in table 1 as nitrite plus nitrate as nitrogen (NO₂+NO₃-N). Nitrate-N concentrations generally are less than 2 mg/L throughout the study area—considerably less than the U.S. Environmental Protection Agency (1976) maximum contaminant level of 10 mg/L for drinking water. Because nitrite concentrations generally are negligible, the concentrations given in table 1 are virtually the same as nitrate concentrations.

The low nitrate concentrations in the upper Mojave River Basin are of particular interest because ground-water nitrate concentrations commonly are high in areas where wastewater is discharged from septic-tank systems (Bouwer, 1978). The movement of nitrate from the septic tank through the unsaturated zone to the underlying ground water and its effect on

Figure 8. Chemical character of water from selected wells.

Table 1. Dissolved-solids and nitrate concentrations in samples from selected wells in the study area

[Well No: See "Well-Numbering System" in text. ft, foot; mg/L, milligram per liter; --, no data]

Well No.	Date of sample	Well depth (ft)	Dissolved solids, calculated sum of constituents (mg/L)	Nitrogen, NO ₂ +NO ₃ dissolved (mg/L as N)
4N/3W-1M1	4-07-80		990	1.6
-5A2	6-24-87	300	213	.58
-7P1	5-27-87	415	113	.61
-15C1	6-08-89	390	1,030	.32
-3A6	5-22-90	120	118	.30
4N/4W-1A1	5-27-88	275	140	2.3
-3Q1	6-08-89	400	125	.33
-8G1	4-08-89	610	106	.96
-8N3	6-06-89	900	135	2.2
-24N1	4-08-80	452	133	2.5
-28E2	4-08-80	593	143	.77
-36Q1	5-27-87		274	4.9
5N/3W-3H2	6-07-89	223	329	2.1
-14G1	7-11-78	226	253	.09
-18E11	8-23-89	131	703	.73
-27E1 ²	8-22-89	240	814	1.7
$-30A1^3$	8-23-89	285	542	.89
5N/4W-11P1	5-22-90	<u></u>	148	.90
-13F2	5-22-90	260	170	.40
-23G1	5-27-87	63	217	.49
-25N1	5-24-90	400	122	.50
-27D8	6-07-89	520	137	1.9
-30K2	6-07-89	650	127	.31

¹ Choctaw site--suction lysimeter at 131 ft.

nitrate concentrations in the ground water will be addressed in subsequent sections of this report.

SAMPLING AND ANALYSIS

SITE SELECTION

Test holes for studies in the unsaturated zone were drilled at eight sites (fig. 9) chosen to represent a range in geohydrologic conditions, years of seepage-pit operation, and residential density. All sites are located away or upgradient from areas of either current or historical agricultural land use (fig. 3). Residential density, date of seepage-pit construction, surface geology, and other pertinent characteristics of each of these sites are given in table 2.

At four of the eight sites (Chevenne-I and -II, Choctaw, and Cajon), sampling devices were installed below the water table to determine possible effects of wastewater on ground-water quality. In addition, two multiple-well monitoring sites (fig. 9) installed-one upgradient (Apple Ranchos) and one downgradient (Rincon) of a group of mostly older residences that dispose of wastewater in seepage pits-to determine the importance of dilution by vertical mixing in the saturated zone. Location and characteristics of all ground-water-sampling devices and monitoring wells are given in table 3.

TEST DRILLING AND INSTRUMENTATION OF STUDY SITES

Test holes for installation of suction lysimeters and neutron-probe access tubes were drilled using a 9.75-inch-diameter hollow-stem auger at seven of the eight sites and using a drilling process referred to as ODEX (overburden drilling by the excenter [Swedish

² Apple Ranchos multiple-completion well.

³ Rincon multiple-completion well.

Figure 9. Location of monitoring sites.

Table 2. Location and characteristics of residential wastewater-disposal study sites

[Residential density: single family, 1/2 acre per lot; multiple family, duplex or triplex. Geologic units penetrated: Qoa, older alluvium; Qof, older fan deposits; Qol, old lake and lakeshore deposits; gal/d, gallon per day; month and year; ft, foot; --, no neutron access tube]

Site name	Community	Residential	Winter water usage, 1989 (gal/d)	Date seepage pit was constructed (mo/yr)	Altitude of land surface (ft)	Lysimeters installed	Depth of neutron access tube (ft)	Lateral- flow hole	Depth to water table, 1988–89 (ft)	Geologic units penetrated
Toltec	Apple Valley	Single family	388	4/88	3,030	4	66	No	1220	Qoa, Qof
Cheyenne-I	Apple Valley	Single Family	750	11/83	2,923	7	ı	Yes	112	Qoa, Qof
Vasquez	Victorville	Single family	250	4/88	2,840	4	68	No	185	Qol
Choctaw	Apple Valley	Single family	625	4/78	2,920	4	I	Yes	124	Qol, Qoa
Little Beaver	Apple Valley	Multiple family	875	4/88	2,970	4	121.5	N _o	150	Qoa, Qof
Kiowa	Apple Valley	Multiple family	812	61/6	2,975	ю	ı	No	150	Qoa, Qof
Cheyenne-II	Apple Valley	Single family	338	3/87	2,927	ю	119	No	1117	Qoa, Qof
Cajon	Hesperia	Single family	260	12/77	3,060	8	1	No	252	Qoa, Qof

¹Water table not reached by drilling; depth based on estimate from Subsurface Surveys, Inc., (1990, pl. 4).

Table 3. Location and characteristics of ground-water monitoring sites

[Well No: See "Well-Numbering System" in text (LYS at end of well number indicates lysimeter). Altitude in feet above sea level. Depths and sampling interval in feet below land surface]

Site name	Well No.	Altitude of land surface	Type of monitoring device	Depth of monitoring device	Sampling interval	Depth to water table	Date of measure- ment	Remarks
Cheyenne-I	5N/3W-16E1LYS	2,923	Suction lysimeter below water table	113	112.5–113	112	4-9-88	Water level measured when hole drilled
Choctaw	5N/3W-18E1LYS	2,920	Suction lysimeter below water table	131	130.5–131	124	4-13-88	Water level measured when hole drilled
Cheyenne-II	5N/3W-16M1	2,927	Neutron access tube	123	119–123	Min. 117.3 Max. 120.70	9-12-88 6-9-88	Well point attached to neutron access tube
Cajon	4N/4W-23F1LYS	3,060	Lysimeter below water table	257	256.5–257	Min. 253.2 Max. 254.3	12-9-89 1-11-90	
	4N/4W-23F9	3,060	Piezometer	266	254–260.8	Min. 253.2 Max. 254.3	12-9-89 1-11-90	1.5-inch pipe
Apple Ranchos	5N/3W-27E3	2,950	Multiple- completion well	240	232-236.5	Min. 153.69 Max. 170.09	2-6-89 8-22-89	Upgradient multiple-well monitoring site
	-27E4	2,950	do.	199	189–194	Min. 152.74 Max. 163.48	2-6-89 8-22-89	
	-27E5	2,950	do.	173	163–168	Min. 151.62 Max. 158.99	12-15-88 8-22-89	
	-27E6	2,950	do.	152	143–148	Min. 145.73 Max. 147.04	6-2-88 (¹)	
Rincon	5N/3W-30A1	2,960	Multiple- completion well	285	270–280	Min. 175.74 Max. 185.99	3-7-89 8-13-89	Downgradient multiple-well monitoring site
	-30A2	2,960	do.	233	218–228	Min. 177.22 Max. 182.92	3-7-89 8-23-89	
	-30A3	2,960	do.	200	185–195	Min. 177.14 Max. 181.14	3-7-89 4-12-89	

¹147.04 feet is depth from land surface to bottom of perforation; depth to water level exceeded this on 6-7-88, 7-23-88, 8-9-88, 9-13-88, 10-14-88, and 8-22-89.

for "eccentric" method) at the Cajon site because of the greater depth (more than 250 ft) to the water table. Cores were taken from each of the test holes using an 18-inch stainless steel split-spoon core barrel driven into the undisturbed material ahead of the drill or auger bits.

The ODEX method, which consists of a percussion hammer and an eccentric reamer, allows a casing to follow the reamer as the hole is drilled. When completion depth is reached, the drill stem, percussion hammer, and reamer are pulled through the casing, and the casing then is pulled from the borehole. However, during the process of pulling the casing at the Cajon site, the 6-inch steel casing ruptured, leaving the hole cased from 184 to 262 ft below land surface (on the basis of caliper measurements). The entire length of this unrecovered casing was perforated in place, at 3-inch intervals with eight 1 1/2-inch by 3/16-inch vertical slots spaced equidistant around the casing. These perforations, which constitute slightly less than 2 percent of the casing's surface area, allow for the exchange of moisture between the unsaturated zone (saturated zone at the deepest lysimeter prior to decline of the water table below 257 ft after 1990) and the three lysimeters installed within the casing at depths of 199, 243, and 257 ft.

Suction lysimeters were installed at several depths in at least one test hole (lysimeter hole) at each of the eight residential sites to monitor the movement and quality of wastewater in the unsaturated zone (table 4). At six of the eight sites, lysimeter holes were drilled within about 5 ft of the seepage pits. At two of the new-residence sites (Toltec and Vasquez), the hole was drilled through the bottom of the (as-yet-unused) seepage pit. At Chevenne-I and Choctaw, a second test hole for installation of suction lysimeters was drilled 25 and 50 ft, respectively, from the seepage pit to ascertain possible lateral movement of wastewater. The suction lysimeters within each test hole were isolated from one another by backfilling the annulus with alternating layers of native material and bentonite powder. The suction lysimeter's porous ceramic cup was encased in silica flour to provide a clean transmission medium for soil water entering the porous cup, to enhance hydraulic contact between the adjoining soil and the cup, and to help prevent clogging of the porous cup by colloids, organic matter, or soil particles (Parizek and Lane, 1970). Typical suction lysimeters and their installation are shown in figure 10A, B.

Suction lysimeters consist of a porous ceramic cup that is attached to a polyvinyl chloride pipe that

is connected to land surface by two access tubes (fig. 10C). Two types of suction lysimeters, each about 2 ft long, 1.9 in. in diameter, and having a nominal pore size of 1.4 µm, were used for this study: (1) single chamber (for installation depths less than 50 ft below land surface), and (2) double chamber (for installation depths greater than 50 ft). Many of the single-chamber lysimeters, as indicated in table 4, were damaged before the study was completed. A possible explanation for the high failure rate of the single-chamber lysimeters is that excess pressure was applied to the access tubes during sampling, resulting in separation of the tubes from the lysimeter. If single-chamber lysimeters are installed at depths greater than 50 ft below land surface, a substantial proportion of the collected sample is forced back into the soil by the high air pressures necessary to force the collected sample to the surface. The doublechamber lysimeter incorporates two check valves that prevent pressurization of the porous cup. The check valves allow water to flow from the soil through the porous cup and into the upper chamber when a vacuum is applied. When pressure is applied to collect the sample, the lower check valve prevents the sample from entering the porous cup.

At four of the sites (Toltec, Vasquez, Little Beaver, and Chevenne-II), a test hole (neutron-logging hole) was drilled within 5 ft of the seepage pit for installation of a 2-inch galvanized-steel access tube, which was used for measuring moisture content by neutron logging. The annular space was backfilled with native material and with a 2- to 3-foot plug of bentonite powder opposite clay-rich zones.

A summary of monitoring devices installed and analyses completed at each study site is given in table

ANALYSIS OF SOIL CORES AND PORE WATER

Core material from the upper part of the splitspoon core barrel was placed in a plastic bag, airdried for several days, then stored for later analysis of grain size. Material from the lower part of the splitspoon core barrel was taken for determination of moisture content and for selected chemical and bacterial analyses.

PHYSICAL ANALYSES

Color, lithology, and qualitative indications of moisture content were determined by field inspection

Table 4. Suction-lysimeter depth and lateral distance from seepage pit

[USGS site identification No.: A unique number for each site based on the latitude and longitude of the site. The first six digits are latitude, the next seven digits are longitude, and the final two digits are a sequence number to uniquely identify test holes and (or) depth of monitoring device at each residential site. ft, foot]

Site name	USGS site identification No.	Depth of suction lysimeter (ft)	Lateral distance from seepage pit (ft)	Remarks
Toltec	342655117111401	73	0	Destroyed 5-4-90.
	02	50	0	Do.
	03	40	0	Do.
	04	33	0	Do.
Cheyenne-I	343125117121501	113	5	First hole, drilled 4-9-88; destroyed 1-11-90.
	08	106	5	Second hole, drilled 12-6-88; destroyed 1-11-90
	02	92.5	5	First hole
	09	73	5	Second hole
	10	63	5	Do.
	04	48	25	Lateral flow hole; no water; destroyed 1-11-90.
	11	42	5	Second hole
	03	37	5	First hole
Vasquez	343314117195201	71	0	N
	02	51	0	No water after 6-8-88: damaged.
	03	43	0	NI 6 0.02.00
	04	35	0	No water after 8-23-89.
Choctaw	343124117143001	131	5	
	02	80	5	
	03	48	5	No water after 10-14-88: damaged.
	04	33	5	No water after 1-27-89: damaged.
	05	48	50	Lateral-flow hole; never yielded water.
Little Beaver	342857117120604	77	5	Suction lysimeter in hole with neutron-probe access tube; only yielded water last time sampled (1-11-90).
	05	67	5	Suction lysimeter in hole with neutron-probe access tube; only yielded water once.
	01	40	5	
	02	31.5	5	
Kiowa	342917117122601	149	5	Sample volumes small.
	02	107.5	5	
	03	67.5	5	No water after 10-14-88: damaged.
	04	32	5	No water after 3-6-89: possibly damaged.
Cheyenne-II	343114117122302	98	5	Never yielded water: damaged on installation.
	03	67	5	
	04	10	5	Above active water level in seepage pit; never yielded water.
Cajon	342518117160601	257	5	Only two samples.
•	02	243	5 5	•
	03	199	5	Only two samples.
	04	160	5	Only one sample (1-11-90).
	05	130	5 5	•
	06	97.5	5	Only two samples.
	07	70	5	
	08	35	5	No water after 3-6-89.

Figure 10. Diagrams showing (A) typical suction lysimeters, (B) installation, and (C) sampling method.

as the cores were recovered. Subsamples were dried and placed in resealable plastic bags for later analysis of grain size. Grain-size analyses were done according to methods described by American Society for Testing and Materials (1988, p. 87–93). Sieves were used for the sand and gravel fractions, and hydrometers were used for the clay and silt fractions. Results of these grain-size analyses for the eight residential sites are given in table 6 (and shown graphically in figures 12 and 13 later in this report).

Gravimetric moisture content of core material was determined by comparing the original weight of the sample (approximately 100 grams) with its dry weight (dried to a constant weight at 100 to 105°C for 12 to 18 hours). Measured moisture contents, expressed in percent of wet sample weight, are given in table 7. Variability in determinations of moisture-content results from natural inhomogeneity and from moisture loss in the field, even during brief exposure of the core material to the high winds and very low humidity common in the study area, prior to weighing the soil (especially for those samples with very low moisture content). Five subsamples of a core collected from 67 to 69 ft in the neutron hole at Vasquez demonstrate this variability: Measured moisture contents range from 12.1 to 16.5 percent (the mean value of 15.5 percent is given in table 7).

CHEMICAL ANALYSES

Core extracts for determination of pore-water (or interstitial-water) chemistry were prepared by adding 300-mL of deionized water to approximately 100 g wet weight of core material. The relative proportion of water and soil used in the extraction was a compromise between use of enough water to permit processing and chemical analysis, but not so much water as to cause detection problems from excessive dilution. This soil-and-water mixture was placed in a polypropylene centrifuge tube with screw-top cap and agitated vigorously on a wrist-action shaker for about 30 minutes, then centrifuged for 1 hour at 5,000 revolutions per minute (producing a centrifugal force of 5,000 times gravity). The resulting liquid "extract" contains diluted pore water plus any soluble salts (minerals) and exchangeable cations extracted (leached) from the solid phase.

The extract was analyzed for specific conductance and pH in the field laboratory and for ammonia, nitrate, chloride, boron, and total alkalinity at the USGS National Water Quality Laboratory in Arvada, Colorado, using methods described by Fishman and Friedman (1989). The results of these analyses are given as computed pore-water concentration in table 7 (and in figure 13 presented later). Pore-water con-

Table 5. Summary of monitoring devices installed and analyses completed at each study site

[Site: T, Toltec; C-I, Cheyenne-I; V, Vasquez; Ch, Choctaw; LB, Little Beaver; K, Kiowa; C-II, Cheyenne-II; Ca, Cajon; AR, Apple Ranchos; Ri, Rincon]

	T	C-I	V	Ch	LB	K	C-II	Ca	AR	Ri
	M	onitoring	g device	s						
Lysimeter at seepage pit	X	X	X	X	X	X	X	Х		
Lateral-flow lysimeter		X		X						
Piezometer		(¹)		(¹)			(¹)	$(^2)$	X	X
Neutron-access tube	X		X		X		X			
		Analy	/ses							
Grain-size distribution in soil cores	X	X	X		X	X	X	X		
Moisture content in soil cores	X	X	X	X	X	X	X	X		
Fecal coliform in soil		X						X		
Nitrifying bacteria in soil		X						X		
Nitrate-reducing bacteria in soil		X						X		
Total bacteria in soil	X	X		X		X	X			
Soil extract, inorganic, chemical constituents	X	X	X	X	X	X	X	X		
Soil, organic priority pollutants	X	X		X		X	X			
Wastewater, inorganic, chemical constituents		X	X	X		X	X	X		
Wastewater, organic priority pollutants		X	X	X		X	X			
Wastewater, bacteria		X	X	X		X	X			
Nitrogen isotopes		X						X	X	X
Tapwater, chemical constituents	X	X	X	X	X	X	X	X		

¹Bottom lysimeter below water table.

centrations are computed from the measured concentrations in the extracts using the equation:

$$C_p = C_e \frac{W + W_p}{W_p}, \tag{1}$$

where

 C_p is the computed concentration in the pore water,

W is the weight of deionized water used in extraction,

 W_p is the weight of pore water held by the soil sample, and

C_e is the measured concentration in the extract solution.

The large dilution that results during extraction leads to substantial uncertainty in computed porewater concentrations, especially for those samples

with very low moisture content. Additional sources of error are in the measurement of soil moisture and chemical analyses, along with natural inhomogeneity between subsamples (discussed previously). (See Feltz and others, 1985, and Fishman and Friedman, 1989, for general information on analytical precision and detection limits.) A quantitative assessment of precision in computed pore-water concentrations was not attempted for this study, and the precision is likely to be quite variable (depending on soil texture, soil moisture, and chemical concentrations). However, semi-quantitative evaluation of the sources listed above, and qualitative comparison to data obtained from lysimeters and from core extracts at adjacent depths, yields an overall uncertainty estimated to range from about 30 to about 50 percent.

In addition to the dilution errors described above, there is some ambiguity in interpretation of porewater concentrations for sparingly soluble constit-

²Piezometer above declining water table after late 1991.

Table 6. Grain-size distribution for core samples at study sites

[ft, foot; --, no data; <, actual value is less than value shown. Particle-size descriptions are based on Wentworth scale]

		Percent finer than	size, in millimete	ers, indicated		
Depth	Coarse	Medium	Fine	6:14		11
interval (ft)	sand	sand	sand	Silt		lay
(11)	2	0.5	0.25	0.0625	0.002	0.0014
		Toltec site (lysin				
33.5-34	93	63	45	31	6	3
34-34.6	100	74	52	25	7	2 3 2 1 3 3 4
37.3-37.7	100	65	46	27	7	3
37.7-38	100	41	21	13	4	2
37.8-38.6	100	40	21	12	3	1
41.8-42.5	100	47	27	15	5	3
42.5-43	70 77		9		4	3
46.7-48.3	77		17		5	4
48.4-49	80		11		3	3
72.5-73.5	83		7		1	1
	T	oltec site (neutron	-access hole)A	pril 7–8, 1988		
32-33	91	71	55	34	10	6
57-58.5	64	24	14	7	2	<1
67-68	78	34	19	8	1	<1
77-78	71	33	25	20	2	<1
87-88	67	30	18	7	2	<1
97-99	100	88	45	7	2	<1
,	Ch	eyenne-I site (firs	t lysimeter hole)April 9, 1988		
7-9	100	82	58	19	<1	<1
12-14	94	73	43	8	1	<1
17-19	90	40	17	3	1	
22-24	100	90	77	29	3	2
27-28	100	87	60	15	4	2
32-34	98	80	54	9	2 7	<1 2 2 <1 6 4 7
37-39	87	84	78	50		6
42-44	100	89	63	23	5	4
47-49	85	69	57	38	12	
57-59	78	30	11	3	<1	<1
67-69	81	32	15	6	1	<1
77-79	99	98	81	54	13	1
87-89	84	33	13	4	<1	<1
97-99	96	72	53	32	10	4 3
107-109	100	87	78	49	11	3
118-120	100	49	28	12	2	<1
124	100	78	43	8	1	<1
	Cl	heyenne-I site (lat	eral-flow hole)	April 10, 1988		
27-29	99	94	82	33	4	2 8 5
37-39	99	98	96	62	12	8
47-49	99	82	68	48	7	5
		Vasquez site (lysi	meter hole)Ap	oril 11, 1988		
36-38	55	22	10	7	2	<1
41-43	94	49	20	4	2 2	<1
46-48	92	56	19	8	3 7	<1
51-53	94	64	45	30	7	4
61-63	89	50	35	22	6	3
71-73	99	92	81	48	12	<1 4 3 7

Table 6. Grain-size distribution for core samples at study sites--Continued

		Percent finer than		ers, indicated		
Depth interval	Coarse sand	Medium sand	Fine sand	Silt	C	lay
(ft)	2	0.5	0.25	0.0625	0.002	0.0014
		Vasquez site (nei	itron hole)Api	ril 12, 1988		
7-9	98	89	76	39	6	3
17-19	89	34	11	3	2	<1
27-29	100	98	95	64	4	2
37-39	64	19	9	6	3	<1
47-49	98	84	50	7	<1	<1 3 2
57-59	98	76 70	67	53	5	3
67-69	98	78	56	37	4	2
77-78	98	83	69	41	2	1
87-89	89	39	18	7	1	<1
		Choctaw site (lysi				
3-5	97	74	54	17	<1	<1
8-10	95	57	34	8	<1	<1
13-15	89	34	10	2	<1	<1
18-20	99	87	69	25	1	1
23-25	100	98	91	30	4	<1
28-30	99	94	86	55 25	5	2 2 1 2 4
33-35	94	74	54 54	25	3	2
38-40	99 87	81 38	54 22	27 7	2 2	1
43-45 48-50	87 100	38 97	85	36	5	2
53-55	97	70	44	23	5	<1
63-65	97 91	45	18	23 7	2	<1
73-75	96	72	50	26	6	5
83-85	97	82	66	34	6	4
93-95	66	33	16	4	1	<1
103-105	77	26	11	3	î	1
113-114	96	79	66	35	8	7
114-115	94	62	30	6	1	<1
123-125	98	77	69	59	18	13
,	L	ittle Beaver site (ly	vsimeter hole)	April 23, 1988		
17-19	82	34	14	6	2	2
27-29	95	93	90	37	3	<1
37-39	91	89	86	51	4	2
47-49	92	82	74	45	14	3 4
57-59	91	74	59	32	13	4
77-79	100	100	97	58	3 6	2 3
97-99	91	81	71	39	6	3
		Kiowa site (lysin	neter hole)Apr	il 25, 1988		
7-9	58	26	14	7	3	<1
12-14	77	35	14	4	3 2 2	<1
17-19	99	·93	65	14		<1
22-24	100	99	96	34	3	<1 2
27-29	100	97	90	53	4	2

Table 6. Grain-size distribution for core samples at study sites--Continued

		Percent finer than s	size, in millimete	ers, indicated		
Depth	Coarse sand	Medium sand	Fine sand	Silt	(Clay
interval (ft)	2	0.5	0.25	0.0625	0.002	0.0014
	Kiov	va site (lysimeter l	nole)April 25,	1988Continued		
32-34	99	87	55	19	3	<1
37-39	87	52	33 37	15	2	<1
42-44	95	66	45	23	4	<1
47-49	100	94	78	24	4	<1
57-59	100	100	97	44	3	<1
67-69	98	86	78	64	13	7
77-79	93	74	62	19	2	<1
87-89	77	39	22 .	10	5	<1
97-99	97	82	69	46	7	4
117-119	96	89	84	63	14	7
127-129	94	76	65	31	5	2
137-139	96	82	64	31	17	4
147-149	90	50	23	9	2	<1
	Char	yenne-II site (neut	ron occoss hole	A: 27 1099		
7-9	100	88	61	14	2	2
17-19	85	60	47	22	2	2
22-24	94	87	80	22	5	4
27-29	96	39	17	3	2	<1
32-34	92	29	11	3	1	<1
37-39	100	98	94	37	7	3
42-44	91	78	42	9	3	1
47-49	100	97	94	63	11	7
57-59	95	73	58	41	13	9
67-69	100	95	79	39	8	5
77-79	80	32	23	8	4	3
87-89	99	92	82	44	6	4
97-99	79	41	30	14	4	3
	(Cajon site (lysimete	er hole)Novem	nber 29, 1988		
82-84	93	46	27	13	5	<1
101-103	86	56	36	18	8	7
121-123	100	91	47	20	8	7
40.5-142.5	98	78	52	19	8	8
60.5-162.5	92	43	24	9	3	<1
80.5-182.5	78	35	19	7	<1	<1
00.5-202.5	62	36	23	9	4	1
220-222	81	54	36	14	4	3
240-242	83	40	22	8	3	3

Table 7. Moisture content and pore-water chemical concentration determined from cores at residential study sites

[Chemical concentrations calculated from analyses on deionized-water extracts using known quantities of core material, except pH reported from extract analyses directly; mg/L, milligram per liter; µS/cm, microsiemen per centimeter at 25 degrees Celsius; <, less than reporting limit; ND, not detected; --, not analyzed]

Core depth interval (in feet below land surface	Moisture content (weight percent)	Nitrate/ chloride (weight ratio)	pH (standard units)	Specific conductance (µS/cm)	Ammonia NH ₃ -N (mg/L)	Nitrate NO ₃ -N (mg/L)	Chloride (mg/L)	Boron (mg/L)	Total alkalinity, as CaCO ₃ (mg/L)
		Tolt	ec site (neut	ron-access hol	e)April 7-	8, 1988			
5-7	1.85	0.017	7.9	18,000	1	40	2,400	4	3,000
23-24	4.15	.10	7.0	13,000	ND	270	2,700	2	300
32-33	5.73	.12	7.3	3,900	ND	89	750	1	400
42-43	3.38	.062	7.5	2,100	ND	36	580	2	600
57-58.5	1.58	.037	7.7	2,100		14	380	2	1,100
67-68	2.23	.034	7.9	1,500	ND	11	320	3	900
77-78	1.22	.049	7.8	2,400	7	17	340	2	1,400
87-88	1.94	.038	7.6	2,000		8.9	240	3	1,000
97-99	5.96	.049	7.7	610		5.6	110	1	300
		Chey	enne-I site (first lysimeter	hole)April	9, 1988			
7-9	6.81	0.0024	9.0	22,000	1	11	4,800	9	2,700
1-14	3.58	.0088	7.3	17,000	5	33	3,700	6	400
17-19	2.92		7.9	4,200		88			
22-24	9.60	.28	7.4	1,500	.6	58	210	10	300
27-28	12.10	.025	9.0	2,200		4.6	180	10	800
32-34	8.15		7.2	2,100	3	52			
37-39	23.70	.24	8.4	1,900		29	120	13	600
42-44	13.70		8.4	1,400		40			
47-49	14.80		8.9	2,900	ND	44			
57-59	3.30		8.7	2,600		56			
67-69	5.02	.099	9.7	5,600	ND	55	550	18	2,500
77-79	22.30	.16	8.6	2,900	ND	31	190	2	600
87-89	2.78		7.3	2,600	ND	19			
97-99	23.00		7.9	1,600	2	.73			
107-109	18.40		8.9	2,700	.3	.82			
118-120	17.50	.011	7.7	1,400	.5	2.0	180	.5	150
		Chey	enne-I site	(lateral-flow h	ole)April 1	0, 1988			
27-29	14.0	0.11	8.4	4,500		31	290	7	400
27-29	14.0	.11	8.7	4,800		32	280	7	600
37-39	30.7	.28	8.4	4,300	ND	35	130	4	500
47-49	12.3	.19	8.5	2,400		31	160	3	500
49-49.2	15.3	.18	8.7	2,500		33	180	4	600
		Cheyenne	e-I site (seco	nd lysimeter l	ole)Decen	ıber 6, 19	88		
17-19	12.7	0.11		3,900	2	24	220	6	1,000
22-24	13.1	.18		1,700	.3	33	180	6	400
27-29	13.2	.26		1,500	.7	52	200	9	300
32-34	3.87	.12		2,000	5	34	290	12	600
37-39	32.8	.21		1,600	ND	22	100	8	500
42-44	10.0	.13		1,500	.09	27	200	11	300
47-49	12.4	.12		1,600	1	25	210	15	300
52-53	3.04	.11		2,000	1	36	350	14	600
62-64	14.3	.10		1,500	1	22	220	12	400

Table 7. Moisture content and pore-water chemical concentration determined from cores at residential study sites--*Continued*

Cheyenne-I site (second lysimeter hole)-December 6, 1988-Continued	Core depth interval (in feet below land surface	Moisture content (weight percent)	Nitrate/ chloride (weight ratio)	pH (standard units)	Specific conductance (µS/cm)	Ammonia NH ₃ -N (mg/L)	Nitrate NO ₃ -N (mg/L)	Chloride (mg/L)	Boron (mg/L)	Total alkalinity, as CaCO ₃ (mg/L)
72-74		Che	eyenne-I site	e (second lys	simeter hole)	December 6	, 1988 <i>Ca</i>	ontinued		
77-79										
82-84 8.04 .033 1.900 .9 10 310 .7 200 87-89 1.90 .031 400 .5 2.1 68 .3 100 92-94 13.1 .0667 2.700 .7 15 230 .6 500 97-99 12.4 .086 1.700 2 18 210 .8 200		14.2								
87-89									3	
92-94 13.1 0.667 2,700 7 15 230 6 500 97-99 12.4 0.86 1,700 2 18 210 8 200 Vasquez site (lysimeter hole)April 11, 1988 36-38 4.21						.9				
Vasquez site (lysimeter hole)April 11, 1988										
Vasquez site (lysimeter hole)April 11, 1988										
36-38	97-99	12.4	.086		1,700	2	18	210	.8	200
41-43			Va	asquez site (lysimeter hole)April 11,	1988			
46-48										
51-53 11.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Nation Characteristic Characterist										
Vasquez site (neutron hole)April 12, 1988 T-9										
T-9										
7-9 11.9	71-73	20.0								
17-19			V	asquez site	(neutron hole)	April 12, 1	1988		-	
27-29 11.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
37-39										
47-49 7.05										
57-59 10.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
67-69										
77-78 16.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Choctaw site (lysimeter hole)April 13, 1988 3-5 6.99 0.051 9.67 5,600 2 7.3 140 2 4,400 8-10 9.37 .38 8.72 2,900 .6 40 110 .8 1,200 13-15 5.07 .63 7.02 1,100 ND 40 63 1 200 18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .011 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7										
Choctaw site (lysimeter hole)April 13, 1988 3-5 6.99 0.051 9.67 5,600 2 7.3 140 2 4,400 8-10 9.37 .38 8.72 2,900 .6 40 110 .8 1,200 13-15 5.07 .63 7.02 1,100 ND 40 63 1 200 18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 .660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80										
3-5 6.99 0.051 9.67 5,600 2 7.3 140 2 4,400 8-10 9.37 .38 8.72 2,900 .6 40 110 .8 1,200 13-15 5.07 .63 7.02 1,100 ND 40 63 1 200 18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130	07-07	3.21								
8-10 9.37 .38 8.72 2,900 .6 40 110 .8 1,200 13-15 5.07 .63 7.02 1,100 ND 40 63 1 200 18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 <		(00	····					140		4.400
13-15 5.07 .63 7.02 1,100 ND 40 63 1 200 18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120										
18-20 12.4 .026 7.50 820 .7 2.2 82 .7 300 23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5										
23-25 17.2 .60 8.22 2,000 ND 22 37 .4 900 28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
28-30 15.9 .032 7.63 750 3 5.3 170 1 300 28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 83-85 12.1 7.40 890										
28-30 15.9 .11 7.64 660 7 6.0 53 .9 200 28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 83-85 12.1 7.40 890 20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
28-30 15.9 .049 7.56 700 12 6.6 130 1 200 33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></td<>									_	
33-45 7.31 .0037 7.80 1,200 .49 130 1 600 38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2										
38-40 12.3 .0079 7.95 1,400 .65 83 2 700 43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2									_	
43-45 2.97 .014 7.46 2,700 3 2.7 200 3 700 48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400									$\tilde{2}$	
48-50 13.5 .084 7.78 1,000 .2 9.9 120 2 400 53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400										
53-55 10.4 .12 9.11 2,500 .5 15 120 3 1,400 63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400									2	
63-65 6.92 .064 7.99 980 7.4 110 7 400 73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400		10.4		9.11		.5				
73-75 9.26 .12 7.53 920 .6 21 170 6 300 83-85 12.1 7.40 890 20 3 300 93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400	63-65	6.92	.064	7.99	980		7.4	110	7	400
93-95 4.24 .10 7.45 1,400 19 190 11 600 103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400			.12	7.53		.6	21	170		
103-105 5.14 .15 7.19 1,000 2 16 110 4 400 113-115 3.31 .18 7.25 1,200 2 19 110 1 400										
						2				
123-125 19.8 .0054 8.51 2,600 .1 .88 160 .9 580									_	
	123-125	19.8	.0054	8.51	2,600	.1	.88	160	.9	580

Table 7. Moisture content and pore-water chemical concentration determined from cores at residential study sites--*Continued*

	Core depth interval (in feet below land surface	Moisture content (weight percent)	Nitrate/ chloride (weight ratio)	pH (standard units)	Specific conductance (µS/cm)	Ammonia NH ₃ -N (mg/L)	Nitrate NO ₃ -N (mg/L)	Chloride (mg/L)	Boron (mg/L)	Total alkalinity, as CaCO ₃ (mg/L)
27-29			Little Bear	ver site (lysi	meter hole)A	pril 23, 198	88Contin	ued		
37-39	17-19	2.57								
Strong S										
S7.59										
Color										
T-7-79										
77-79	67-69	6.13								
No. No.			Litt	le Beaver si	te (neutron ho	le)April 24	1, 1988			
No.										
No. Color Color										
7-9 4.35 0.082 7.51 120,000 5 34 420 4 1,200 12-14 3.52 .049 9.37 9,400 ND 36 730 2 3,100 17-19 12.4 .28 6.44 760 1 20 72 6 200 22-24 13.5 6.90 1,200 11 .4 100 27-29 15.5 7.29 1,600 .7 33 .6 200 32-34 17.0 1.1 7.47 950 .3 42 38 .7 200 37-39 7.26 7.21 820 3.6 1 300 42-44 9.90 .29 7.17 830 ND 23 28 200 47-49 12.9 7.95 1,500 <td< td=""><td>97-99</td><td>6.87</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	97-99	6.87								
12-14	****					April 25, 1	1988			
17-19										
13.5										
27-29						_				
32-34										
37-39										
42-44 9.90 .29 7.17 830 ND 23 .8 200 47-49 12.9 7.95 1,500 26 .9 500 57-59 18.7 7.60 1,100 19 .7 300 67-69 18.8 7.84 610 7.5 2 200 77-79 14.5 7.84 880 15 .5 300 87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1						.3				
47-49 12.9 7.95 1,500 26 .9 500 57-59 18.7 7.60 1,100 19 .7 300 67-69 18.8 7.84 880 15 .5 300 87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 .9 1,100 148-149 4.27 8.17 1,300 1 2 600						ND			_	
57-59 18.7 7.60 1,100 19 .7 300 67-69 18.8 7.84 610 7.5 2 200 77-79 14.5 7.84 880 15 .5 300 87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 .9 1,100 148-149 4.27 8.64 2,500 3 27 .9 1,100										
67-69 18.8 7.84 610 7.5 2 200 77-79 14.5 7.84 880 15 .5 300 87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 9 1,100 148-149 4.27 8.17 1,300 1 2 600 Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25										
77-79 14.5 7.84 880 15 5 300 87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 .9 1,100 148-149 4.27 8.64 2,500 3 27 .9 1,100 14-149 4.27 8.17 1,300 1 2 600 Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25										
87-89 7.95 7.38 750 1 16 .3 300 97-99 11.6 .35 7.71 940 22 62 .4 400 107-109 13.8 .0037 8.51 1,500 .73 200 .8 100 117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 .9 1,100 148-149 4.27 8.64 2,500 3 27 .9 1,100 148-149 4.27 8.17 1,300 1 2 600 Cheyenne-II site (neutron-access hole)April 27, 1988 Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25 44,000 ND 51 5,300 39 4,200										
107-109						1				300
117-119 15.7 7.61 690 20 1 300 127-129 14.3 7.37 570 </td <td>97-99</td> <td>11.6</td> <td>.35</td> <td>7.71</td> <td>940</td> <td></td> <td></td> <td></td> <td></td> <td></td>	97-99	11.6	.35	7.71	940					
127-129 14.3 7.37 570 1- 1- 1.100 137-139 12.6 8.64 2,500 3 27 .9 1,100 Cheyenne-II site (neutron-access hole)April 27, 1988 Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25 44,000 ND 51 5,300 39 4,200 12-14 3.6 .0037 8.28 33,000 ND 22 6,000 14 1,900 17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400	107-109		.0037					200	.8	
137-139							20		1	300
Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25 44,000 ND 51 5,300 39 4,200 12-14 3.6 .0037 8.28 33,000 ND 22 6,000 14 1,900 17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 </td <td></td>										
Cheyenne-II site (neutron-access hole)April 27, 1988 7-9 0.98 0.0096 8.25 44,000 ND 51 5,300 39 4,200 12-14 3.6 .0037 8.28 33,000 ND 22 6,000 14 1,900 17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 </td <td></td>										
7-9 0.98 0.0096 8.25 44,000 ND 51 5,300 39 4,200 12-14 3.6 .0037 8.28 33,000 ND 22 6,000 14 1,900 17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41	148-149	4.27		8.17	1,300		1		2	600
12-14 3.6 .0037 8.28 33,000 ND 22 6,000 14 1,900 17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .										
17-19 8.41 .021 8.4 15,000 ND 43 2,100 6 1,400 22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 <td></td>										
22-24 11.1 .24 8.7 4,400 ND 31 130 1 1,100 27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600	12-14									
27-29 5.62 .17 6.87 1,400 .5 45 260 .9 200 32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8										
32-34 5.86 .12 7.13 1,400 .9 38 330 300 37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
37-39 24.6 .45 7.87 1,600 .2 52 120 .9 300 42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700						.5				
42-44 8.35 .37 8.76 1,900 .7 92 250 1 600 47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700						.9				
47-49 20.1 7.84 1,500 .1 41 1 400 57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700										
57-59 15.6 7.61 1,800 160 1 300 67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700			.51							
67-69 19.2 .040 7.59 1,500 .1 6.9 170 .3 200 77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700										
77-79 2.77 .0023 6.96 2,200 4 1.3 570 ND 500 87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700			.040			.1				
87-89 14.5 7.38 1,600 .85 97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700										
97-99 7.11 .0031 7.22 2,000 .8 1.1 360 1 200 107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700										
107-109 11.0 .48 7.23 1,600 ND 24 50 .5 700	97-99	7.11	.0031	7.22			1.1			
117-119 13.3 .036 7.44 1,900 2 9 250 .8 200		11.0				ND			.5	
··· · · · · · · · · · · · · · · · · ·	117-119	13.3	.036	7.44	1,900	2	9	250	.8	200

Table 7. Moisture content and pore-water chemical concentration determined from cores at residential study sites--Continued

Core depth interval (in feet below land surface	Moisture content (weight percent)	Nitrate/ chloride (weight ratio)	pH (standard units)	Specific conductance (µS/cm)	Ammonia NH ₃ -N (mg/L)	Nitrate NO ₃ -N (mg/L)	Chloride (mg/L)	Boron (mg/L)	Total alkalinity, as CaCO ₃ (mg/L)
		Che	yenne-II site	e (lysimeter ho	ole)April 28	3, 1988			
27-29	5.56		7.32	1,700	4	59		1	300
42-43	19.3	0.30	8.58	2,000	ND	39	130	.8	500
43-44	16.4	.10	8.71	1,800	ND	20	200	.7	500
67-69	19.9	.055	7.96	2,100	ND	12	220	.4	300
97-99	13.0	.0043	7.87	1,400	.6	.79	180	.9	200
		Caj	on site (lysi	meter hole)N	lovember 29	, 1988			
21-23	9.62	0.41		280	4	48	120	ND	200
82-84	7.72	.14		890	6	25	180	ND	200
101-103	6.89	.25		1,100	4	29	110	0.4	200
121-123	11.6	.33		710	1	27	81	ND	100
140.5-142.5	12.3	.24		710	2	32	130	.2	100
160.5-162.5	5.14	.22		1,300	3	24	110	ND	300
200.5-202.5	7.44	.13		870	1	25	200	ND	200
220-222	6.69	.0078		900	3	.99	130	ND	300
240-242	3.74	.031		1,900	6	3.9	130	ND	400

uents. Highly soluble constituents, such as NO₃, Cl⁻, and probably B, are not affected by such considerations. However, NH₄+ (ammonium) is strongly sorbed, especially by ion-exchange on clay minerals. Specific-conductance data from one core sample extracted with varying soil-to-water proportions (range was from 2:1 to 1:4) revealed the additional dissolution of sparingly soluble minerals and (or) a shift in the relative proportion of major cations in the extract at the greater dilutions. Although alkalinity is presumed to be similarly affected, values of pH varied less than 0.1 pH unit over this entire range of dilution.

Data for nitrate that are given in this report include the analysis of nitrate plus nitrite; however, because nitrite (a transient form of nitrogen that generally undergoes rapid biological transformation in nature) is present in quantities that are much less than the quantities of nitrate, results are referred to throughout this report simply as "nitrate."

MICROBIOLOGICAL ANALYSES

All microbiological analyses of core material and wastewater were done in the field laboratory, which was equipped with an autoclave, refrigerator, incubators, filtration apparatus, and microscope. Analyses included total heterotrophic bacteria (standard plate count), fecal coliform, and nitrifying and nitrate-respiring (including denitrifying) bacteria. Standard methods of analysis described by Britton and Greeson (1987) were used.

The stainless steel split-spoon core barrel was flame-sterilized prior to collection of each core. Exterior parts of the core that were in contact with the liner were removed with a sterile spatula, and a small quantity of soil from the interior was excised and placed in a sterile "whirl-pak" plastic bag. The bag was stored on ice or refrigerated until analyses were begun (usually within 6 hours of sample collection).

The membrane filtration (MF) method was used for analysis of total bacteria (standard plate count) and fecal coliform. Ten grams (wet weight) of soil was dispersed into 90 mL of sterile phosphate (with peptone) buffer. Six successive decimal (10x) dilutions (total dilution factor of 10⁻⁷) were prepared from the mixture to produce ideal plate counts. Aliquots of each dilution were assayed in triplicate. Cellulose acetate nitrate, 0.45-µm membrane filters were incubated for enumeration of total bacteria on Standard Methods agar (extract of tryptone glucose yeast) [manufactured by BBL Microbiology Systems, Cockeysville, Maryland at 30°C for 24 hours. Filters for fecal coliform were incubated on M-FC agar Imanufactured by Millipore Corp., Bedford, Massachusetts] at 44.5°C for 24 hours. Total-bacteria and

coliform counts are reported as CFU (colony-forming units) per gram of wet soil in table 8. The data indicate widespread presence of heterotrophic bacteria but complete absence of fecal coliform in the soil beneath the seepage pits.

The presence of nitrifying and nitrate-respiring (a group of nitrate reducers that includes denitrifiers) bacteria was determined for core samples from two test holes, at Chevenne-I and Cajon. A three-tube MPN (most probable number) method was used with five order-of-magnitude decimal dilution aliquots inoculated. An ammonium calcium carbonate medium and a nitrite calcium carbonate medium were used for the Nitrosomonas and Nitrobacter groups of nitrifying bacteria, respectively. Nitrate-broth medium was used for the nitrate-respiring bacterial group. Ten grams of wet soil was dispersed in a dilution blank containing 95-mL of deionized water and glass beads, and from this mixture successive decimal dilutions (to a dilution factor of 10⁻⁶) were prepared with deionized water. Culture tubes containing appropriate media were inoculated with an aliquot from each dilution series, and an additional tube of medium was set aside as a control. Results are reported in table 9 as MPN per gram of wet soil with 95-percent confidence interval based on positive and negative results from three 1-, three 0.1-, and three 0.01-milliliter dilutions from each dilution series.

IN SITU MONITORING IN THE UNSATURATED ZONE

SOIL-MOISTURE CONTENT

Periodic monitoring of soil-moisture content beneath the seepage pits at four sites was done using a neutron-logging instrument. The instrument measures the attenuation of neutrons by hydrogen atoms in water as a neutron source is lowered down the access tube. Moisture content can be determined from neutron logging by calibration to known field soil-moisture contents or, as was done in this study, by using the manufacturer's calibration. Manufacturer's calibration was adequate for this study because the results were used only qualitatively to estimate the rate of vertical wastewater movement. Theory, operation, and calibration of neutron logging are described by Troxler Electronic Laboratories, Inc., (1983).

Weekly monitoring was done at the three new residences (Toltec, Vasquez, and Little Beaver sites) to accurately characterize the initial movement of wastewater. Frequency of monitoring was later

Table 8. Fecal coliform and total bacteria (from standard plate count) for core samples at study sites

[Fecal-coliform and total-bacteria colony counts (colony-forming units) are per gram of wet soil; ft, foot]

Sample		Colony	count
depth	Date	Essal soliform	Total bastonia
(ft)	77.14	Fecal coliform	Total bacteria
		site (neutron hole)	
5-7	4-7-88	0	4,200
23-24	4-7-88	0	0
32-33	4-8-88	0	0
42-43	4-8-88	0	0
57-58	4-8-88	0	0
77-78	4-8-88	0	200
97-99	4-8-88	0	0
		-I site (lysimeter ho	
12-13	4-9-88	0	0
22-24	4-9-88	0	13,000
27-38	4-10-88	0	0
37-39	4-9-88	0	0
67-69	4-9-88	0	250
77-79	4-10-88	0	. 0
118-120	4-10-88	0	¹ 120
124	4-9-88	0	560
	Cheyenne-	l site (lateral-flow h	ole)
27-29	4-11-88	0	0
37-39	4-11-88	0	0
47-49	4-11-88	0	0
	Choctaw	site (lysimeter hole	e)
23-25	4-13-88	0	0
28-30	4-13-88	0	¹ 190
43-45	4-13-88	0	0
53-55	4-13-88	0	0
73-75	4-14-88	0	0
113-115	4-14-88	0	0
	Kiowa	site (lysimeter hole)	
17-19	4-25-88	0	¹ 160
22-24	4-25-88	0	0
27-29	4-25-88	0	0
32-34	4-25-88	0	¹ 290
37-39	4-26-88	0	25,000
42-44	4-26-88	0	¹ 13,000
47-49	4-26-88	0	0
77-79	4-26-88	0	0
	Cheyenne	-II site (neutron ho	le)
12-14	4-27-88	0	0
27-29	4-27-88	0	1,200
32-34	4-27-88	0	¹ 1,800
42-44	4-27-88	0	0
67-69	4-27-88	0	0
77-79	4-28-88	0	0
97-99	4-27-88	0	0
117-119	4-28-88	0	0
	Cheyenne-	II site (lysimeter ho	ole)
27-29	4-28-88	0	0
43-44	4-28-88	0	0
IEct.	imate based	on non-ideal colony	Count

Table 9. Nitrifying and nitrate-reducing bacteria for core samples from Cheyenne-I and Cajon sites

[ft, foot; <, actual value is less than value shown; --, confidence limit cannot be calculated]

Sample	Most probable number (MPN) of	Most probable number (MPN) of	95-percent co	onfidence limits
depth (ft)	nitrifying bacteria per gram of wet soil	nitrate-reducing bacteria per gram of wet soil	Lower	Upper
	Samj	Cheyenne-I site ples collected December 6-7, 1988		
19	0	4,300	700	21,000
24	0	200	70	890
29	0	23,000	4,000	120,000
39	0	4,300	700	21,000
49	0	150	30	440
53	0	90	10	360
64	0	90	10	360
69	0	40	<5	200
74	0	140	30	370
79	0	2,300	400	12,000
89	0	30	<5	90
94	0	<30		
99	0	90	10	360
109	0	<30		
	S 1	Cajon site	1000	
	Samples co	ollected November 29-December 2	, 1988	
84	0	93,000	15,000	380,000
123	0	930	150	3,800
182	0	230	40	1,200
242	0	<30		

reduced to monthly, as was done at the established 2-year-old site at Cheyenne-II. The profiles of soil-moisture content over time are presented (in figure 12) later in this report.

PORE-WATER QUALITY

water-quality Time-series data from unsaturated zone beneath the seepage pits at all eight residential sites were acquired by frequent sampling of suction lysimeters. Suction lysimeters were sampled by applying a vacuum (about 60 centibars, equal to 40 centibars absolute pressure) greater than soil suction to the interior of a buried porous cup, which induces water to flow from the unsaturated material into the lysimeter. The sampled soil water, which is presumed to have been effectively filtered by its passage through the silica flour and ceramic cup, then was forced to land surface by applying nitrogen gas pressure to one tube of the two-tube system (fig. 10C). Although sampling characteristics varied considerably from one lysimeter to another, about 2 to 4 weeks between the evacuation and subsequent application of nitrogen pressure was found to be

necessary for maximum accumulation of water within most lysimeter cups. Shorter periods resulted in incomplete recovery and longer periods apparently result in partial loss of the sample through leakage back into the soil.

Following installation, the lysimeters initially were sampled several times (although few of these samples were analyzed) to establish hydraulic contact between the soil moisture and ceramic cup, to remove contaminants associated with the installation process. and to observe the wastewater plume's rapid initial movement through the unsaturated zone. Monitoring was reduced to once a month or less frequently, at both new and established residences, after this short initial period. Determination of specific conductance and pH was done in the field immediately after sample collection. Aliquots were sent in polyethylene bottles to the USGS National Water Quality Laboratory in Arvada, Colorado, for analysis of NO₃, NH₃, Cl, B, and alkalinity (and other constituents in a few samples). Bottles for analysis of nutrients (nitrogen species) were chilled, and mercuric chloride was added as a biocide. Water-quality data from the suction lysimeters are presented in table 10.

Table 10. Chemical analyses of samples from suction lysimeters

[USGS Site Identification No. is explained in headnote for table 4. ft, foot; mg/L, milligram per liter; μ S/cm, microsiemen per centimeter at 25 degrees Celsius; °C, degree Celsius; <, less than indicated reporting limit; --, no data]

USGS site identification No. (lysimeter depth)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitrogen (mg/L as N)	Nitro- gen, organic (mg/L as N)	Nitro- gen, ammonia (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
		· · · · · · · · · · · · · · · · · · ·		Toltec sit	e				
342655117111401	8-23-89	21.5	735	15	1.2	0.04	14		54
(73 ft)	12-09-89	23.0	685	14	.77	.03	13		
342655117111402	9-12-88	26.0	740	3.0	.29	.01	2.7		
(50 ft)	10-14-88	26.0	690			.07	7.3		
	3-06-89	21.0	700	18	1.4	.06	17		
	4-10-89	20.0	820	22	1.7	.04	20		
	5-22-89	20.0	850	27	2.6	.01	24		
	8-23-89	22.0	770	18	.68	.02	17		
	12-09-89	23.0	770	18		<.01	17		
342655117111403	6-02-88			1.9	.38	.02	1.5		25
(40 ft)	6-08-88			4.2	.82	.08	3.3		28
	6-09-88			8.3	.56	.04	7.7		
	7-13-88	24.0	650	6.8		<.01	6.4		41
	8-09-88	28.0	670			.03	4.8		45
	9-12-88	26.5	730	3.0	.56	.04	2.4		55
	10-14-88	26.0	635			.02	8.3		
	2-06-89	11.0	715	11	1.3	.04	9.9		
	3-06-89	24.0	810	20	1.0	.10	19		
	4-10-89	20.0	750	7.3	1.8	.07	5.4		
	5-22-89	20.0	810	27	1.9	.02	25		
	7-08-89			22	1.6	.03	20		
	8-23-89	22.0	660	19	.87	.03	18		
	12-09-89	23.0	690	16	.79	.01	15		
342655117111404	6-02-88			2.8	.57	.03	2.2		24
(33 ft)	6-08-88			7.2	1.2	.05	5.9		32
,	6-09-88			7.5		<.01	6.5		
	7-13-88	24.0	490	7.3	.80	3.9	2.6		41
	8-09-88	28.0	620		1.0	11	<.10		35
	9-12-88	26.0	700		12	1.5	<.10		40
	10-14-88	26.0	615			22	.10		
	2-06-89	14.0	685	9.5	1.1	7.8	.57		29
	3-06-89	25.0	710	24	21	1.6	.53		
	4-10-89	20.5	740	30	8.0	22	.26		
	5-22-89	21.0	750	22	<.10	22	.30		28
	7-08-89				<.10	23	<.10		
	8-23-89	25.0	610	29	9.0	20	.17		31
	12-09-89	23.0	995		51	1.6	<.10		42
			Cl	neyenne-I	site				
343125117121501	5-13-88					0.02	0.71		200
(hole 1, 113 ft)	6-02-88			0.50	0.35	.05	.10		260
•	6-08-88				.40	.10	<.10		300
	7-13-88	25.0	3,100		.42	.08	<.10		

Table 10. Chemical analyses of samples from suction lysimeters--Continued

12 14 15 17 17 18 18 17 18 18 19 19 19 19 19 19	USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
(73 ft) 28 50 86 90 19 342655117111402				T	oltec siteC	ontinued				
1342655117111402	342655117111401	12	79	2.9	54	68	84	100		158
(50 ft)										199
342655117111403	342655117111402									
342655117111403	(50 ft)									
342655117111403										
342655117111403										
342655117111403										263
342655117111403										203
(40 ft) 6.1 74 2.9 11 63 93 90 1 9.8 70 4.2 16 63 87 80 1 12 64 8.0 24 31 79 70 2 15 77 7.1 29 27 91 80 2 20 110 10 1 20 27 98 300 2 25 21 98 780 2 25 21 98 780 2 38 17 97 890 2 23 18 91 610 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 11 8.7 47 33 27 7.2 37 50 2 9.0 34 16 17 14 31 50 1 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 20 180 180 2 7.9 91 13 25 11 38 760 3 7.9 91 13 25 11 38 760 3 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 843125117121501 51 270 7.9 660 360 33 600 2 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 11 66 320 8.4 820 380 32 780 11										
(40 ft) 6.1 74 2.9 11 63 93 90 1 9.8 70 4.2 16 63 87 80 1 12 64 8.0 24 31 79 70 2 15 77 7.1 29 27 91 80 2 20 110 10 1 20 27 98 300 2 25 21 98 780 2 25 21 98 780 2 38 17 97 890 2 23 18 91 610 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 18 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 11 8.7 47 33 27 7.2 37 50 2 9.0 34 16 17 14 31 50 1 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 20 180 180 2 7.9 91 13 25 11 38 760 3 7.9 91 13 25 11 38 760 3 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 843125117121501 51 270 7.9 660 360 33 600 2 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 11 66 320 8.4 820 380 32 780 11	342655117111403	4.2	60	3.0	12	45	88	100		162
9.8 70 4.2 16 63 87 80 17 12 64 8.0 24 31 79 70 20 15 77 7.1 29 27 91 80 2 20 110 2 25 21 98 780 2 25 21 98 780 2 38 17 97 890 2 23 18 91 610 2 20 14 90 390 2 18 18 92 180 2 18 18 92 180 2 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 17 (33 ft) 7.4 31 4.6 9.5 25 29 40 17 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 17 20 180 20 10 52 17 24 5.0 40 110 17 20 180 20 10 52 17 24 5.0 40 110 17 20 180 20 7.9 91 13 25 11 38 760 33 29 3.0 39 220 30 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 17 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 60 2 8.0 57 11 23 3.0 38 60 2 8.0 57 11 23 3.0 38 60 2 8.0 57 11 23 2.0 38 2.0 370 34 690 2										173
12 64 8.0 24 31 79 70 2 15 77 7.1 29 27 91 80 2 1 20 110 2 1 20 27 98 300 2 1 25 21 98 780 2 1 38 17 97 890 2 1 23 18 91 610 2 1 20 14 90 390 2 1 18 18 92 180 2 1 18 18 92 180 2 1 18 18 92 180 2 1 18 15 88 190 2 1 18 15 88 190 2 1 19 15 88 190 2 1 10 52 17 24 15 88 190 11 10 52 17 24 5.0 40 110 11 11 24 5.0 40 110 11 11 25 11 38 760 2 11 38 760 2 12 342655171111404 5.6 62 12 27 70 15 10 52 17 24 5.0 40 110 11 11 11 11 11 11 11 11 11 11 11 11 11										
15 77 7.1 29 27 91 80 2 20 110 2 20 27 98 300 2 25 21 98 780 2 38 17 97 890 2 23 18 91 610 2 20 14 90 390 2 18 18 92 180 2 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 11 8.7 47 33 27 7.2 37 50 2 9.0 34 16 17 14 31 50 1 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 8.7 47 33 25 11 38 760 2 7.9 91 13 25 11 38 760 3 43 9.0 43 680 3 43 9.0 43 680 3 43 9.0 43 680 3 29 3.0 39 220 3 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11										190
20										244
20 27 98 300 22 25 21 98 780 2 38 17 97 890 2 38 17 97 890 2 23 18 91 610 2 20 14 90 390 2 18 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 11 8.7 47 33 27 7.2 37 50 11 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 8.7 47 33 25 11 38 760 2 10 52 17 24 5.0 40 110 17 20 180 20 7.9 91 13 25 11 38 760 33 29 3.0 39 220 33 29 3.0 39 220 33 21 3.0 38 60 22 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued										289 289
25 21 98 780 22 38 17 97 890 2 38 17 97 890 2 23 18 91 610 2 20 14 90 390 2 18 18 892 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 11 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 20 180 20 7.9 91 13 25 11 38 760 3 43 9.0 43 680 3 43 9.0 43 680 3 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued **Cheyenne-I siteContinued**										269 276
38 17 97 890 2 23 18 91 610 2 20 14 90 390 2 18 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 11 9.0 34 16 17 14 31 50 1 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 8.7 47 33 27 7.2 37 50 2 10 52 17 24 5.0 40 110 11 20 180 22 7.9 91 13 25 11 38 760 33 43 9.0 43 680 33 43 9.0 43 680 33 29 3.0 39 80 22 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued 343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 (fole 1, 113 ft) 60 320 8.2 820 370 34 690 10										273
23 18 91 610 2 20 14 90 390 2 18 18 92 180 2 24 15 88 190 2 342655117111404 5.6 43 2.9 9.6 21 27 70 1 (33 ft) 7.4 31 4.6 9.5 25 29 40 1 9.0 34 16 17 14 31 50 1 8.7 47 33 27 7.2 37 50 1 10 52 17 24 5.0 40 110 1 20 180 180 2 10 52 17 24 5.0 40 110 1 20 180 2 7.9 91 13 25 11 38 760 3 43 9.0 43 680 3 29 3.0 39 220 3 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 31 34 1.0 41 710 11 21 3.0 38 60 2 8.0 57 31 34 1.0 41 710 11										250
18 18 92 180 22 342655117111404 5.6 43 2.9 9.6 21 27 70 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 1. 9.0 34 16 17 14 31 50 2. 9.0 34 16 17 14 31 50 2. 10 52 17 24 5.0 40 110 1. 20 180 1. 7.9 91 13 25 11 38 760 3. 43 9.0 43 680 3. 29 3.0 39 220 3. 7.6 62 12 22 2.0 39 80 2. 8.0 57 11 23 2.0 38 60 2. 8.0 57 11 23 2.0 38 150 2. 10 83 11 34 1.0 41 710 1. Cheyenne-I siteContinued **Cheyenne-I siteContinued** **Cheyenne-I siteContinued**										225
342655117111404 5.6 43 2.9 9.6 21 27 70 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 1. (33 ft) 7.4 33 27 7.2 37 50 2. (34 ft) 7.4 7 33 27 7.2 37 50 2. (35 ft) 7 24 5.0 40 110 11 7. (35 ft) 7.9 91 13 25 11 38 760 180 7.9 91 13 25 11 38 760 3. (35 ft) 7.6 62 12 22 2.0 39 80 29 3.0 39 220 3.0 39 20 20 3.0 39 20 20 3.0 39 20 20 3.0 39 20 20 3.0 39 20 20 3.0 39 20 20 3.0 39 20 20										218
342655117111404 5.6 43 2.9 9.6 21 27 70 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 1. (33 ft) 7.4 31 4.6 9.5 25 29 40 1. (34 ft) 7.4 31 50 1. (35 ft) 7.4 70 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4										205
(33 ft) 7.4 31 4.6 9.5 25 29 40 11 9.0 34 16 17 14 31 50 17 8.7 47 33 27 7.2 37 50 22 10 52 17 24 5.0 40 110 17 20 180 2 7.9 91 13 25 11 38 760 3 43 9.0 43 680 3 29 3.0 39 220 30 7.6 62 12 22 2.0 39 80 2 7.6 62 12 22 2.0 39 80 2 8.0 57 11 23 2.0 38 150 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued Cheyenne-I siteContinued Cheyenne-I siteContinued					24	15	88	190		213
9.0 34 16 17 14 31 50 17 22 10 52 17 24 5.0 40 110 18 17 18 18 760 18 18 18 18 18 18 18 18 18 18 18 18 18	342655117111404	5.6	43	2.9	9.6	21	27	70		142
9.0 34 16 17 14 31 50 15 8.7 47 33 27 7.2 37 50 17 10 52 17 24 5.0 40 110 17 10 52 17 24 5.0 40 110 18 10 50 50 50 50 50 50 50 50 50 50 50 50 50	(33 ft)	7.4	31	4.6	9.5	25	29	40		136
8.7 47 33 27 7.2 37 50 22 10 52 17 24 5.0 40 110 11 20 180 22 7.9 91 13 25 11 38 760 33 43 9.0 43 680 33 29 3.0 39 220 30 7.6 62 12 22 2.0 39 80 20 21 3.0 38 60 22 8.0 57 11 23 2.0 38 150 22 8.0 57 11 23 2.0 38 150 21 10 83 11 34 1.0 41 710 11 **Cheyenne-I siteContinued** **Cheyenne-I siteContinued** **Cheyenne-I siteContinued** **Cheyenne-I siteContinued** **Cheyenne-I siteContinued** **A3125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 (hole 1, 113 ft) 60 320 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 320 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 8.4 820 380 32 780 10 (hole 1, 113 ft) 60 83 60 60 60 60 60 60 60 60 60 60 60 60 60										
10 52 17 24 5.0 40 110 11 110 11 110 12 110 110 110 110 110 110 110 110 110										171
7.9 91 13 25 11 38 760 33 34 690 35 36 67 320 8.4 820 380 32 780 10 32 3										226
7.9 91 13 25 11 38 760 33 43 9.0 43 680 33 7.6 62 12 22 2.0 39 80 2 7.6 62 12 22 2.0 39 80 2 7.6 8.0 57 11 23 2.0 38 150 2 7.0 83 11 34 1.0 41 710 11 11 11 11 11 11 11 11 11 11 11 11										173 294
43 9.0 43 680 33 29 3.0 39 220 33 7.6 62 12 22 2.0 39 80 22 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued Cheyenne-I siteContinued 343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 67 320 8.4 820 380 32 780										322
29 3.0 39 220 33 7.6 62 12 22 2.0 39 80 22 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued Cheyenne-I siteContinued (hole 1, 113 ft) 60 320 8.2 820 370 34 690 (67 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 820 820 820 820 820 820 820 820 820										345
7.6 62 12 22 2.0 39 80 22 21 3.0 38 60 2 8.0 57 11 23 2.0 38 150 2 10 83 11 34 1.0 41 710 1 Cheyenne-I siteContinued Cheyenne-I siteContinued (hole 1, 113 ft) 60 320 8.2 820 370 34 690 (67 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 380 32 780 (98 320 8.4 820 8.4 820 380 32 780 (98 320 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 8.4 820 820 820 820 820 820 820 820 820 820										305
8.0 57 11 23 2.0 38 150 2. 10 83 11 34 1.0 41 710 11 Cheyenne-I siteContinued 343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 67 320 8.4 820 380 32 780 11		7.6	62	12	22	2.0	39	80		266
Cheyenne-I siteContinued Cheyenne-I siteContinued 343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 67 320 8.4 820 380 32 780 10 50 50 50 50 50 50 50 50 50 50 50 50 50										272
Cheyenne-I siteContinued 343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 67 320 8.4 820 380 32 780 10 50 67 320 8.4 820 380 32 780 10 50 67 820 820 820 820 820 820 820 820 820 820										244
343125117121501 51 270 7.9 660 360 33 600 10 (hole 1, 113 ft) 60 320 8.2 820 370 34 690 10 67 320 8.4 820 380 32 780		10	83	11	34	1.0	41	710		126
(hole 1, 113 ft) 60 320 8.2 820 370 34 690 5 5 67 320 8.4 820 380 32 780				Che	yenne-I site-	Continue	i			
67 320 8.4 820 380 32 780										103
	(hole 1, 113 ft)									97
850 380 33 /40 10										97
550 550 55					830	380	33	/40		100

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitro- gen (mg/L as N)	Nitrogen, organic (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
			Cheyeni	ne-I site	Continued				
343125117121501	8-09-88	25.0	3,100	0.42	0.22	0.08	0.12		260
(hole 1, 113 ft)	9-12-88	30.0	3,200	.75	.35	.05	.35		
Continued	10-14-88	26.0	2,800			.07	.95		
	1-27-89	26.0	2,750	1.4	.54	.16	.66		
	3-06-89	22.0	2,600	2.1	.53	.07	1.5		
	4-10-89	19.0	2,300	1.9	.34	.06	1.5	3.8	160
	7-08-89			3.9	2.7	.06	1.1		
	8-23-89	24.5	2,200	1.6	.43	.07	1.1		140
	1-11-90	24.5	1,990					10	
343125117121508	3-07-89			2.6	.66	.84	1.1		
(hole 2, 106 ft)	4-10-89	21.0	1,160	8.5	1.6	.04	6.9		
	5-22-89	20.0	1,110	6.3	1.2	.03	5.1		
	7-08-89			7.3	.57	.03	6.7		
	8-23-89	25.0	1,480	19	.57	.03	18		
	12-10-89	25.0	1,420					4.0	
343125117121502	6-02-88			3.7	2.0	.05	1.7		
(hole 1, 92.5 ft)	6-08-88			5.2	1.3	.07	3.8		
,	8-09-88		2,100						
	9-12-88		2,250						
	10-14-88	26.0	2,160			.10	5.8		
	1-27-89	24.0	2,030						
	7-20-89		1,740			.05	32		
343125117121509	1-27-89	24.0	2,210	14	1.3	.04	13		
(hole 2, 73 ft)	3-07-89	23.0	1,900	2.5	.58	.82	1.1		
	4-10-89	21.0	2,440	32	.77	.13	31		
	5-22-89	20.0	2,300	41	.96	.14	40		
	7-08-89			42	1.2	.07	41		
	7-21-89	25.0	2,060			.06	35	 4.1	
	12-10-89	25.0	1,640					4.1	
343125117121510	4-10-89	21.0	1,240	31	1.7	.05	29		
(hole 2, 63 ft)	5-22-89	20.0	1,260	37	.88	.02	36		
	7-08-89			35	.77	.03	34		**
	7-20-89		1,370			.01	31		
	8-23-89	25.0	1,250	32	.68	.02	31	2.5	54
	12-10-89	25.0	1,160	33	1.2	.05	32	2.5	
343125117121511	4-10-89	20.0	2,500	30	2.0	.05	28		
(hole 2, 42 ft)	5-22-89	20.0	2,400	31	.95	.05	30		
	7-23-89		2,200			.02	38		
	12-10-89	25.0	1,860					5.4	
343125117121503	6-02-88			60	.94	.06	59		140
(hole 1, 37 ft)	6-08-88			64	1.0	.07	63		220
, , ,	7-13-88	25.0	2,250	6 3		<.01	62		220
	8-09-88	25.0	2,300	58	1.2	.06	57		210
	9-12-88	27.0	2,320	43	1.1	.03	42		190

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
			Che	yenne-I site	Continued	t			
343125117121501	62	320	7.3	780	370	33	770		92
(hole 1, 113 ft)-				750	350	32	850		105
Continued				690 670	340	33	880 800		113 113
				570 570	340 320	35 35	800 800	 	121
	 41	270	6.6	110	310	33 34	830		121
	41	210			J10 	J 4	650		122
	36	240	6.4	450	280	33	800		134
					200				
343125117121508 (hole 2, 106 ft)									
(Hole 2, 100 It)		 		280	210	31	610		120
				200	210	<i>3</i> 1			120
343125117121502									
(hole 1, 92.5 ft)									
								7.80	
343125117121509									
(hole 2, 73 ft)				370	150	3.1	270		23
				99	790	24	2,600		197
				280	430	24	4,800		284
				200	310	23	5,900	8.30	255
								6.30	
343125117121510				200	73	76	7,900		353
(hole 2, 63 ft)				160	49	49	7,300		315
(22.2. 2,,				130	43	46	6,700		295
								8.70	
	15	180	3.0	88	54	44	6,700		306
343125117121511				290	590	94	3,900		365
(hole 2, 42 ft)				230	430	94	5,100		314
								7.90	
343125117121503	44	260	10	320	390	92	5,300		291
(hole 1, 37 ft)	44	230	10	300	420	98	5,200		274
(1, 0, 10)	45	240	9.2	280	410	90	5,500		266
	42	230	8.4	260	410	95	5,800		257
	37	230	7.8	240	390	90	6,800		254

Table 10. Chemical analyses of samples from suction lysimeters--Continued

Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitro- gen (mg/L as N)	Nitrogen, organic (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitrogen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
		Cheyenr	ne-I site	Continued				
10-14-88	26.0	2.110			0.06	11		
1-27-89	25.0		40	1.7	.02	38		
3-06-89	22.0	2,050	52	.75	.05	51		
4-10-89	19.5	1,660	35	1.0	.06	34	3.1	150
			42	.57				
8-23-89 1-11-90	25.0 25.0	1,650 1,610	38 40	.68 .68	.02 .02	37 39	4.0	130
			asquez s	ite	····		· · · · · · · · · · · · · · · · · · ·	
(22 99					0.00	5.0	<u></u>	
								22
								32
						4.2		
4-10-89	20.0	860	4.1	.17	.03	3.9		
5-22-89	20.0	840	4.1	.37	.03	3.7		
1-11-90	23.0	950	3.3	.79	.31	2.2		
6-02-88	29.5	900	6.4	.39	.01	6.0		52
6-08-88			7.6	.78	.02	6.8		
5-19-88			6.7		<.01	6.2		59
6-02-88	30.0	1,850						20
								12
								11
				.76				17
								17
								20
8-23-89	22.0	850		<.10	7.7	<.10		16
5-19-88					<.01	11		25
6-02-88	29.0	1,550	6.3	.49	.01	5.8		48
6-08-88			6.5	.67	.03			44
								51
								39
								40
サーエひつひブ	∠∪.∪	0/0	۷.0	. / /	رن.	۷.0		
	10-14-88 1-27-89 3-06-89 4-10-89 7-08-89 7-20-89 8-23-89 1-11-90 6-22-88 7-12-88 8-08-88 9-12-88 10-14-88 2-06-89 3-06-89 4-10-89 5-22-89 1-11-90 6-02-88 6-08-88 7-13-88 8-08-88 7-13-88 8-08-88 9-12-88 10-14-88 2-06-89 3-06-89 4-10-89 5-22-89 8-23-89 8-23-89 8-23-89	Date ature, water (°C) 10-14-88 26.0 1-27-89 25.0 3-06-89 22.0 4-10-89 19.5 7-08-89 7-20-89 8-23-89 25.0 1-11-90 25.0 6-22-88 7-12-88 24.5 8-08-88 28.0 9-12-88 10-14-88 24.0 2-06-89 9.0 3-06-89 21.0 4-10-89 20.0 5-22-89 20.0 1-11-90 23.0 6-02-88 29.5 6-08-88 5-19-88 6-02-88 30.0 6-08-88 7-13-88 25.0 8-08-88 28.0 9-12-88 10-14-88 24.0 2-06-89 13.0 3-06-89 21.0 4-10-89 20.0 5-22-89 20.0 5-19-88 6-02-88 29.0 6-08-88 7-13-88 25.0 8-08-88 28.0 9-12-88 10-14-88 24.0 2-06-89 13.0 3-06-89 21.0 4-10-89 20.0 5-19-88 6-02-88 29.0 6-08-88 7-13-88 25.0 8-08-88 28.0 9-12-88 27.0 10-14-88 24.0 2-06-89 12.0 3-06-89 12.0 3-06-89 12.0 3-06-89 12.0 3-06-89 12.0	Date ature, water (°C) conductance (μS/cm) Cheyenr 10-14-88 26.0 2,110 1-27-89 25.0 1,940 3-06-89 22.0 2,050 4-10-89 19.5 1,660 7-08-89 7-20-89 1,920 8-23-89 25.0 1,650 1-11-90 25.0 1,610 6-22-88 720 8-08-88 28.0 800 9-12-88 10-14-88 24.0 820 2-06-89 9.0 840 3-06-89 21.0 850 4-10-89 20.0 860 5-22-89 20.0 840 1-11-90 23.0 950 6-02-88 29.5 900 6-02-88 29.5 900 6-02-88 30.0 1,850 6-08-88 7-13-88 <	Date ature, water (°C) conductance (μS/cm) gen (mg/L as N) Cheyenne-I site(μS/cm) 10-14-88 26.0 2,110 1-27-89 25.0 1,940 40 3-06-89 22.0 2,050 52 4-10-89 19.5 1,660 35 7-08-89 42 7-20-89 1,920 8-23-89 25.0 1,650 38 1-11-90 25.0 1,610 40 Vasquez s 6-22-88 700 6.4 7-12-88 24.5 720 7.2 8-08-88 28.0 800 6.9 9-12-88 5.3 10-14-88 24.0 820 2-06-89 9.0 840 4.3 3-06-89 21.0 850 4.6 4-10-89 20.0 860 4.1 5-19-88 </td <td> Date ature, water (°C) as N crganic (mg/L as N) crganic (mg/L as N) crganic (mg/L as N) creation (m</td> <td> Date ature, water (°C) ance (µS/cm) ance (µS/cm) as N) as N as N</td> <td> Date ature, water (°C) ature, water (°C) ature, water (us/cm) as N) as N)</td> <td> Date Author Conduct Conduct</td>	Date ature, water (°C) as N crganic (mg/L as N) crganic (mg/L as N) crganic (mg/L as N) creation (m	Date ature, water (°C) ance (µS/cm) ance (µS/cm) as N) as N as N	Date ature, water (°C) ature, water (°C) ature, water (us/cm) as N) as N)	Date Author Conduct Conduct

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
			Che	yenne-I site	Continued	i			
343125117121503 (hole 1, 37 ft)				230 210	 360	 98	7,100 6,500		258 253
Continued				210	330	100	6,500		255
	32	200	5.9	200	300	95	6,700		259
				170	230	97	6,600		291
								8.70	
	25 	200	5.6	150 130	190 160	96 96	6,000 6,200		328 325
			Va	squez site	Continued				
343314117195201									
(71 ft)	12	100	5.6	37	37	97	170		265
				33	55	25	170		263
				30	280	110	120		146
				28	290	110	120		139
				25	270	100	130		125
343314117195202	15	77	3.1	36	49	93	150		250
(51 ft)				35	40	100	140		261
343314117195203	15	74	3.5	46	70	95	180		225
(43 ft)	5.6	350	4.9	67	400	21	190		326
	3.3	240	3.8	45	170	22	150		343
	3.1	210	3.3	41	100	25	130		352
	4.7	300	4.3	44	260	23	180		409
	5.0	270	3.3	38 30	190	22	190 190		420 409
				27	130	22	150		412
				26	72	25	130		430
	5.6	190	5.6	26	48	24	120		457
				24	41	25	110		437
	4.6	160	6.7	26	20	26	120		382
343314117195204	6.4	400	5.5	83	540	23	190		259
(35 ft)	14	240	7.0	160	170	100	350		268
	14	250	7.8	180	180	100	380		293
	17	260	8.0	200	210	99	420		294
	15	230	7.9	130	170	100	420		351
	16	210	7.4	71	130	100	400		386
				41 26	63	110	340 220		411 424
				26 26	45	110	160		424
				25 25	32	110	150		443
	15	140	4.3	25	18	110	140		415
	•	•		-	•				

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitro- gen (mg/L as N)	Nitro- gen, organic (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
1			(Choctaw s					
343124117143001	6-02-88			1.1	0.58	0.02	0.47		90
(131 ft)	6-08-88			1.5	.47	.03	1.0		75
[within	7-13-88	24.0	1,120	1.3		<.01	.89		92
saturated	8-08-88		1,400	1.2	.48	.02	.67		89
zone]	9-13-88	27.0	1,150	.88		<.01	.58		91
	10-14-88	26.0	1,130			.02	.73		
	1-27-89	20.0	1,170	.88	.36	.04	.48		
	3-06-89	22.0	1,160	.89	.28	.02	.59		
	4-10-89	21.0	1,050	1.0	.26	.04	.70		94
	7-08-89			.79	.27	.03	.49		89
	8-23-89	22.0	1,050	1.2	.48	.02	.73		91
	1-11-90	24.0	1,040	.52	.39	.01	.12		
343124117143002	6-02-88								
(80 ft)	6-08-88								
	7-13-88	25.0	1,100	19		<.01	17		
	8-08-88		1,160						
	9-13-88	27.0	990	14		<.01	13		
	10-14-88	26.0	920			.04	20		
	1-27-89	20.0	970	14	1.7	.31	12		
	3-06-89	22.0	1,100	22	1.2	.02	21		
	4-10-89	21.0	950	24	1.3	.04	23		
	7-08-89			24	2.0	.05	22		
	8-23-89	22.5	1,100	25	.53	.07	24		
	1-11-90	24.0	1,010	26	1.4	.06	24		
343124117143003	5-19-88					<.01	18		86
(48 ft)	6-08-88			11	1.2	.05	10		
	8-08-88		1,750	15	1.5	.01	13		
	9-13-88	27.0	1,560	9.8		<.01	8.8		
	10-14-88	26.0	1,460			.05	14		
343124117143004	5-19-88			8.9	1.0	.05	7.8		
(33 ft)	6-02-88			7.1	.62	.08	6.4		160
,	6-08-88			7.2	.93	.07	6.2		160
	7-13-88	25.0	1,620	6.4		<.01	5.6		130
	8-08-88		1,750	6.2	.44	.06	5.7		130
	9-13-88								130
	10-14-88	26.0	1,380			.03	8.3		
	1-27-89	17.0	1,480	12	.78	.02	11		
343124117143005 (lateral-flow hole, 48 ft)	5-19-88			7.7	1.1	.04	6.6		200

 Table 10.
 Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
			Ch	octaw site	Continued				
343123117143001	20	110	4.1	190	200	32	470	•••	86
(131 ft)	20	110	4.1	190	210	33	480		85
[within	20	110	3.6	180	210	34	470		274
saturated	20	110	3.5	190	190	33	460		87
zone]	21	110	3.4	190	200	34	500		86
-				180			490		88
				190	210	36	460		88
				180	210	38	450		88
	21	120	3.6	190	200	36	490		87
	19	110	7.4	180	210	34	480		89
	19	110	3.7	190	200	34	450		86
				180	200	35	480		87
343124117143002				120	170	98	2,100		242
(80 ft)				110	160	95	1,100		226
` ,				100	160	160	2,600		235
				75	120	23	2,800		229
				64	120	98	3,300		229
				56			3,500		226
							´		
				50	160	100	3,700		215
				50	170	98	4,000		211
							, 		
				49	210	96	3,700		210
							, <u></u>		
343123117143003	16	150	6.7	120	160	94	2,000		240
(48 ft)				120	250	93	640		405
` ,									
				100	290	98	760		351
343124117143004									
(33 ft)	27	280	13	150	400	100	740		544
` /	26	240	10	120	330	97	800		496
	25	210	10	100	290	95	820		560
	25	200	8.8	88	260	96	840		489
	26	180	8.1	74	230	96	930		473
				66			980		462
				62	270	100	910		454
343124117143005 (lateral-flow hole, 48 ft)	36	320	11	190	570	98	680		347

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitro- gen (mg/L as N)	Nitrogen, organic (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
			Lit	tle Beave	r site				
342857117120604 (hole 2, 77 ft)	1-11-90	24.0	2,600	24	3.4	0.22	20		
342857117120605 (hole 2, 67 ft)	8-23-89	24.0	980	21	.67	.03	20		
342857117120601 (hole 1, 40 ft) 342857117120602 (hole 1, 31.5 ft)	9-12-88 10-14-88 2-06-89 3-06-89 4-10-89 5-22-89 7-08-89 8-23-89 1-11-90 6-08-88 6-09-88 7-13-88 8-09-88 9-12-88 10-14-88 2-06-89 03-06-89 4-10-89 5-22-89 7-08-89 8-23-89	28.0 27.0 15.0 21.0 20.0 26.5 23.5 25.5 28.0 28.0 27.0 15.0 21.0 20.0	1,130 1,180 1,080 1,100 880 910 1,170 1,100 1,660 1,120 2,300 2,600 1,080 1,100 2,600 2,500 2,500	3.4 11 5.1 4.0 1.6 3.2 5.9 8.7 23 12 13 9.3 16 11 5.1 25 22 21	 .76 .48 1.6 .37 .39 .89 2.0 1.3 1.2 .86 .64 .76 .48 .73 .73	<.01 .03 .14 .02 .03 .03 .03 .03 .01 .01 .13 .12 .03 .04 .06 .23 .14 .02 .07 .07 .06 .05	3.0 11 9.9 4.6 2.4 1.2 2.8 5.5 7.8 21 11 12 8.4 15 28 9.9 4.6 24 21 20 14		78 130
	1-11-90	23.5	2,450	13 Kiowa si	.98	.02	12		
				Kiowa si	te				
342917117122601 (149 ft)	6-08-88 8-09-88 9-12-88 10-14-88 5-22-89	28.0 25.0 20.0	1,300 825 800	6.3 4.2 1.7 4.3	1.4 3.8	0.06 <.01 <.01 .04 .09	4.8 3.1 1.3 1.3 .42	 	
342917117122602 (107.5 ft)	6-02-88 6-08-88 8-09-88 9-12-88 10-14-88 2-06-89 3-06-89 4-10-89	28.0 27.0 25.0 14.0 21.0	1,340 1,240 1,210 1,110 1,220 760	12 16 18 15 24 18 20	1.1 1.2 2.3 1.8 6.1 1.7 .97	.09 .07 .04 .03 .36 2.9 .08	11 15 16 13 20 15 16	 8.3	 82
342917117122603 (67.5 ft) 342917117122604 (32 ft)	9-12-88 10-14-88 10-14-88 2-06-89 3-06-89	27.0 25.0 25.0 14.0 21.0	840 820 1,380 1,290 1,190	15 10 7.7	 .77 .67	<.01 .04 .03 .03	14 17 11 9.6	 	

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
			Little	Beaver site	eContinue	ed .			
342857117120604 (hole 2, 77 ft)									
342857117120605 (hole 2 67 ft)				81	35	91	800		238
342857117120601									
(hole 1, 40 ft)				90			1,100		371
				71	95	93	1,100		377
				47	37	95	1,000		419
				44	17	92	950		424
				79	13	89	890		413
				85	13	94	1,000		407
				95	13	99	1,600		413
	19	130	2.0	82	12	91	1,500		418
342857117120602									
(hole 1, 31.5 ft)				310					
				270	200	94	150		221
	37	50	3.8	130	190	97	160		198
				130	750	100	210		215
				130			440		251
				75 75	1,500	110	830		296
				56	1,200	110	910		344
				51	980	110	890		372
				68 84	880 7 5 0	110 110	860 860		280
				89	470	110	1,200		501
			K	iowa siteC					
342917117122601				170	430	100	190		117
(149 ft)				02	210	110	260		11 7
				83 73	210		280		117
				13 			200		113
342917117122602									
(107.5 ft)				130	220	100	230		220
							260		
				92			260		204
				 41	40	70	220		245
	17	50	2.0	41	40 15	79 73	220 230		245
342917117122603	17	50	2.9	38 42	15 47	73 99	230 270		247 259
				53			310		259 265
(67.5 ft)								***	
342917117122604				78			350		436
(32 ft)				78	150	87	620		427

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	Nitro- gen (mg/L as N)	Nitro- gen, organic (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ (mg/L as N)	Carbon, organic total (mg/L as C)	Calcium (mg/L)
			Ch	eyenne-I	I site				
343114117122303	5-13-88			34	1.9	0.06	32		
(67 ft)	6-02-88 6-08-88			35 42	3.2	.06 .06	32 42		230 190
	6-09-88			43 42	1.0 1.0	.06	42 41		190
	7-13-88	24.5	1,700	46	1.0	<.01	45		170
	8-08-88	34.0	1,600	45	1.1	.08	44		150
	9-12-88	28.0	1,790			<.01	31		160
	10-14-88	25.0	1,590			.03	45		
	1-27-89	24.0	1,500	37	1.9	.03	35		
	3-06-89	23.0	1,460	46	1.4	.04	45		
	4-10-89	21.0	1,550	49	1.4	.05	48		
	5-22-89	20.0	1,500	54	1.5	.06	52		
				Cajon si	te				
342518117160601	2-06-89	10.0	660	4.3	0.75	0.55	3		
(257 ft)	3-07-89	20.0	710	4.5	.20	1.2	3.1		
[within	4-12-89	21.0	1,500	14	1.0	.18	13		
saturated	8-22-89	22.0	490	3.0	.10	1.8	1.1		
zone]	1-11-90	23.0	510					15	
342518117160602	8-22-89	22.0	2,250	3.1	.88	.62	1.6		
(243 ft)	1-11-90	23.0	2,300	1.9	.81	.19	.93	6.1	
	5-04-90					.17	1.8		
	5-18-90					.17	1.1		
	6-12-90					.21	.8	**	
342518117160603	8-22-89	22.0	550	16	.53	.07	15		
(199 ft)	1-11-90	23.0	610	16	.66	.14	15	4.0	
342518117160604 (160 ft)	1-11-90	23.0	1,200	37	1.3	.44	35	7.6	
342518117160605	4-10-89	20.0	760	35	.87	.33	34		
(130 ft)	7-08-89			38	1.2	.92	36		
,	8-22-89	22.0	660	34	1.1	.31	33		
	1-11-90	23.0	710					15	
342518117160606	4-10-89	21.0	520	31	1.6	.20	29	7.7	26
(97.5 ft)	7-08-89			35	1.4	.44	33		28
	8-22-89	22.0	530	32	.52	.18	31		
	1-11-90	23.0	580	36	1.3	.40	34	5.6	56
342518117160607	4-10-89	20.0	750	32	1.6	.03	30		
(70 ft)	7-08-89			32	1.2	.57	30		
	8-22-89	22.0	720	30	1.2	.37	28		
	1-11-90	23.0	710	6.7	1.3	.09	5.3	3.9	
342518117160608	2-06-89	10.0	980	27	1.9	.05	25		
(35 ft)	3-07-89	20.0	1,110	39	1.4	.06	37		76

Table 10. Chemical analyses of samples from suction lysimeters--Continued

USGS site identification No. (lysimeter depth)	Magne- sium (mg/L)	Sodium (mg/L)	Potas- sium (mg/L)	Chloride (mg/L)	Sulfate (mg/L as SO ₄)	Silica (mg/L)	Boron (µg/L)	15N/14N stable- isotope ratio (permil)	Alkalinity, lab (mg/L as CaCO ₃)
			Chey	enne-II site	Continue	d			
343114117122303				380	390	88	<10		148
(67 ft)	62	160	8.3	370	430	90	490		157
` ,	59	140	6.7	240	340	92	760		230
				190					
	50	120	5.3	180	230	94	930		506
	46	100	4.3	150	160	89	880		274
	52	120	4.0	180	160	80	870		131
				170			840		300
				170	96	85	770		294
				190	86	85	730		323
				190	83	81	800		311
				200	120	74	780		259
			С	ajon site <i>C</i>	ontinued			***	
342518117160601				130	55	12	60		63
(257 ft)					51	16	20		88
[within				380	150	29	190		89
saturated				69	39	14	20		89
zone]									
342518117160602				370	260	74	130		318
(243 ft)				71	130	78	40		87
								7.10	
342518117160603				53	49	91	40		52
(199 ft)				46	42	85	40		44
342518117160604 (160 ft)									
342518117160605				40	74	94	40		95
(130 ft)				35	92	90	20		59
(130 11)				33	66	86	30		45
342518117160606	7.3	54	1.8	32	22	54	80		30
(97.5 ft)	8.1	52	1.5	32	16	55	90		26
(91.5 11)	0.1 		1.5	34	17	58	90	 	26 26
	15	95	4.3	37	16	81	90		30
342518117160607				35	82	98	70		116
(70 ft)				35	120	87	70		59
				33	110	89	80		55
				46	88	82	80		52
342518117160608				50	150	110	110		258
(35 ft)	16	160	4.3	87	230	85	60		156

Suction lysimeters provide the only practical means for obtaining an in situ water sample from the deep unsaturated zone. However, some investigators have questioned whether the chemical quality of lysimeter samples is representative of the soil water. Possible problems include contamination of the sample by lysimeter materials, variability of intake rates of the lysimeters, inability to collect sufficient sample volume, inhomogeneities in the flow regime. and the effects of chemical disequilibrium conditions. A study by Peters and Healy (1988) demonstrated that for nondilute solutions, samples from suction lysimeters that measured major cation and anion concentrations were representative of the natural soil water; however, trace-metal concentrations could be significantly altered by this collection procedure at low concentrations. It was found in this study of the upper Mojave River Basin that once the lysimeter system had been thoroughly flushed by collection of several samples, chemical composition, especially as measured by specific conductance, approached a steadystate value. Unfortunately, the approximately 1-year period for which monitoring was originally budgeted for this study is shorter than ideal, and the frequency of sample collection and analysis may have been too low. The much greater constancy in data acquired after monitoring was resumed at the Cajon site in 1991, as well as the long time required for downward movement of the wastewater (Schroeder and others, 1993), indicates that monitoring should proceed for a few years. It also is probable that the lower variability in concentrations within the wastewater zone is partly due to sample collection by a single individual when monitoring was resumed in 1991 as opposed to collection by several individuals before then.

ANALYSIS OF TAPWATER AND WASTEWATER

Water quality was determined in the tapwater (collected from outdoor taps) supplied to the eight residences. The results, given in table 11, can be used to quantify water-quality changes as the water is used and disposed. The wide range in specific conductance of tapwater, from about 200 µS/cm at Toltec, Vasquez, Choctaw, and Cajon to more than 700 μS/cm at Cheyenne-I and -II, reflects areal variations in ground-water quality in the study area that are discussed in the "Ground-Water Quality" section and portrayed in figure 8. Note that nitrate concentration is very low (0.4 to 1.3 mg/L as N, rounded) at all sites (table 11). Data for a few of the minor (or trace) constituents at the new residences—for example, zinc at Toltec-likely were influenced by leaching from new pipes at the time of sample collection.

Wastewater quality was determined on samples from septic tanks and (or) seepage pits at five of the residential sites (table 12). Access to the disposal systems was achieved by removing about 3 ft of dirt and lifting off the concrete covers. Samples were collected by dipping a glass jar into the wastewater. Access to the seepage pit at Vasquez was through a tube extended to land surface, and sampling was accomplished by lowering a bottom-filling glass bailer with glass-ball check valve. At the time of sample collection at Vasquez, the residence had been occupied for only a short time and the seepage pit contained only a few inches of wastewater. For wastewater samples analyzed for inorganic constituents and organic carbon, solids were removed by centrifugation. Specific organic compound (priority pollutant) analyses were on raw (uncentrifuged) samples, and these results are presented in a later section of this report.

Results of analyses for total bacteria and fecal coliform in wastewater from septic tanks at four residences and from seepage pits at Vasquez and Cheyenne-II are presented in table 13. Methods of analysis were similar to those used for soil samples, and results are expressed in colony-forming units (CFU) per 100 mL of wastewater.

ANALYSIS OF SHALLOW-GROUND-WATER QUALITY

Results of ground-water-quality analyses from the multiple-well monitoring sites are given in table 14. These sites consist of three to four 2-inch polyvinyl chloride monitoring wells installed at different depths in the same hole. Perforated intervals of the wells are isolated from one another by low-permeability bentonite grout. A typical multiple-well monitoring site is depicted in figure 11.

Ground water from just below the water table at four of the residential sites also was analyzed. Samples were obtained from a well point attached to the bottom of the neutron-access tube at Cheyenne-II (119 to 123 ft); from suction lysimeters at Cheyenne-I (113 ft), Choctaw (131 ft), and Cajon (257 ft); and from a core recovered during drilling at Cheyenne-I (124 ft). Although data from the ground-water sample recovered during drilling at Cheyenne-I are included in table 13, it is noted that a sample obtained in this manner is less reliable than one obtained from a permanent well or suction lysimeter because the drill auger mixed soil and water in varying proportions from over a fairly broad depth zone.

Table 11. Chemical analyses of tapwater at residential study sites

[mg/L, milligram per liter; µg/L, microgram per liter, µS/cm, microsiemen per centimeter at 25 degrees Celsius; <, less than indicated reporting limit; --, not analyzed]

Site name	Date	Specific conduct- ance (µS/cm)	ic pH ct- (stan- dard n) units)		Nitrogen, N nitrite, N dissolved d (mg/L as (i	Nitrogen, NO ₂ +NO ₃ , dissolved (mg/L as N)	Nitrogen, ammonia, dissolved (mg/L as N)	Nitrogen, ammonia + organic, dissolved (mg/L as N)	1 1	Phos- C, phorus, ortho, s dissolved (mg/L as P)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Potas- sium dissolved (mg/L as K)	Alka- limity, lab (mg/L as CaCO ₃)
Toltec Cheyenne-I Vasquez Choctaw Little Beaver Kiowa Cheyenne-II Cajon	4-22-88 4-22-88 4-22-88 4-22-88 r 4-24-88 r 4-25-88 7-27-88	38 181 38 780 38 202 38 212 38 345 38 402 38 736 39 222	8 8 8 9 9 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	v	 	0.57 1.3 1.1 44 .74 .79 .79	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6020 620 620 620 620 620 620 620 620		0.02 .01 .04 .02 .02 .03	13 57 4.6 13 26 29 55	7.7 14 .42 1.5 9.3 10 13	12 75 40 30 32 40 72 24	1.6 3.3 1.1 1.2 2.4 2.4 3.1 1.4	64 84 84 84 84 84 84 84 84 84 84 84 84 84
Site name	Sulfate, dis- solved (mg/L as SO ₄)	Chloride, Fluoride, dis-dis-solved solved (mg/L as (mg/L as Cl) F)	1	Silica, dis- solved (mg/L as SiO ₂)	Boron, dis- solved (µg/L as B)	Chromium, dis- solved (µg/L as Cr)	Copper, dis- solved (µg/L as Cu)	lron, dissolved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)	Lithium, dis- solved (µg/L as Li)	Manga- nese, dissolved (µg/L as Mn)	Nickel, dis- solved (µg/L as Ni)	Strontium, dissolved µg/L as (Sr)	Zinc, dis- solved (µg/L as Zn)	Carbon, organic, dissolved (mg/L as C)
Toltec Cheyenne-I Vasquez Choctaw Little Beaver Kiowa Cheyenne-II	9.1 140 4.9 22 2 80 80 140	4.6 100 7.7 8.2 14 28 98 6.8	0 6 2 2 2 2 2 2 2 2 2 2	29 26 16 18 28 27 27	20 570 10 120 210 340 560	11111112	1111110	110 4 4 7 7 7 7 7 30 30	11111112	9 0 0 1 1 5 1 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6	~ ~ ~ ~ ~ ~ ~ ~	111117	79 890 140 220 200 250 840	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	: : : : : : : : : 0

Table 12. Chemical analyses of wastewater at residential study sites

[mg/L, milligram per liter; µg/L, microgram per liter; µS/cm, microsiemen per centimeter at 25 degrees Celsius; <, less than indicated reporting limit; --, not analyzed]

Site name (source of sample)	Date C	Specific conduct- ance (µS/cm)	pH (stan- dard units)	Nitrogen, nitrite, dissolved (mg/L as N)	Nitrogen, NO ₂ +NO ₃ , dissolved (mg/L as N)	Nitrogen, ammonia, dissolved (mg/L as N)	Nitrogen, 1 ammonia + organic, dissolved (mg/L as	Phosphorus, ortho, dissolved (mg/L as P)	Calcium, dissolved (mg/L as Ca)	Magnesium, dissolved (mg/L as Mg)	Sodium, dissolved (mg/L as Na)	Potassium, dissolved (mg/L as K)
Cheyenne-I	4-22-88	1,690	7.9	;	ŀ	4	53	7.2	59	17	200	13
(sepuc tank) Vasquez (seepage pit)	6-08-88	696	: :	1 1	3.9	30	30	18	18	2.2	96 :	= 1
Choctaw (septic tank)	88-80-9	735	;	0.07	.26	6.1	46	1.2	56	4.3	70	14
Kiowa (septic tank)	88-80-9	645	:	.03	.20	18	22	4.9	37	01 9	57	7.3
Cheyenne-II (sentic tank)	9-98-88	1,910	:	1	ŀ	31	20	0.7	%	61	730	13
Cheyenne-II	88-80-9	1,890	:	ł	<.10	8.9	99	1.2	98	19	230	15
(seepage pit) Cajon (septic tank)	3-07-89	750	7.4	ł	:	4	63	;	1	;	ł	1
Cajon (seepage pit)	3-07-89	747	7.6	;	1	41	9	:	1	;	;	;
Site name (source of sample)	Alkalinity, lab, (mg/L as CaCO ₃)	Sulfate, dissolved (mg/L as SO ₄)	Chloride, dissolved mg/L as Cl)	Fluoride, dissolved (mg/L as F)	Silica, dissolved (mg/L as SiO ₂)	Boron, dissolved (µg/L as B)	Iron, dissolved (µg/L as Fe)	Lithium, dissolved (µg/L as Li)	Manganese, dissolved (μg/L as Mn)	Strontium, dissolved (µg/L as Sr)	Zinc, dissolved (µg/L as Zn)	Carbon, organic, dissolved (mg/L as
Cheyenne-I (septic tank)) 457	140	180	0.5	30	1,300	69	30	21	870	11	ŀ
Vasquez (seepage pit)	246	25	30	λi	5 6	9	62	S	38	230	က	17
Choctaw (septic tank)	 274	: 85	: 68	¦ ∞:	: 4	320	: 00	; ∞	36	300	: 05	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Kiowa (septic tank)	180	0/	37	9.	30	320	280	6	20	280	22	10
Cheyenne-II (septic tank)		270	160	7.	41	1,400	210	22	31	1,200	22	4
Cheyenne-II (seepage pit)	t) 238	170	160	9:	43	1,500	530	23	4	1,200	31	37
Cajon (septic tank)	;	ł	1	1	;	;	!	1	1	;	:	63
Cajon (seepage pit)	;	ı	1	ŀ	1	}	1	;	;	ł	:	43

Table 13. Fecal coliform and total bacteria (from standard plate count) in wastewater from septic tanks and seepage pits

[CFU/100 mL, colony-forming units per 100 milliliters wastewater]

Site name	Sample date	Fecal coliform (CFU/100 mL)	Total bacteria (CFU/100 mL)
Cheyenne-I (septic tank)	4-22-88	2.5×10 ⁵	9.4×10 ⁸
Choctaw (septic tank)	6-8-88	6.8×10 ⁴	1.2×10 ⁸
Kiowa (septic tank)	6-8-88	3.9×10 ⁵	3.7×10 ⁸
Cheyenne-II (septic tank)	6-8-88	3.3×10 ⁵	4.1×10 ⁸
Cheyenne-II (seepage pit)	6-8-88	2.8×10 ⁵	8.1×10 ⁸
Vasquez (seepage pit)	6-8-88	5.2×10 ⁴	5.5×10 ⁸

Figure 11. Construction of a typical multiple-well monitoring site.

Table 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites

[ft, foot; mg/L, milligram per liter; μ g/L, microgram per liter; μ S/cm, microsiemen per centimeter at 25 degrees Celsius; °C, degrees Celsius. <, less than indicated reporting limit]

Site name (source of sample)	Depth (ft)	Date	Temper- ature, water (°C)	Specific conduct- ance (µS/cm)	pH (stan- dard units)	Nitrogen, organic, dissolved (mg/L as N)	Nitrogen, ammonia, dissolved (mg/L as N)	Nitro- gen, NO ₂ +NO ₃ , dis- solved (mg/L as N)	Phosphorus, ortho, dissolved (mg/L as P)
Cheyenne-I	113	5-13-88					0.02	0.71	
(suction lysimeter)		6-02-88				0.35	.05	.10	
•		6-08-88				.40	.10	<.10	
		7-13-88	25.0	3,100		.42	.08	<.10	
		8-09-88	25.0	3,100		.22	.08	.12	
		9-12-88	30.0	3,200		.35	.05	.35	
		10-14-88	26.0	2,800			.07	.95	
		1-27-89	26.0	2,750		.54	.16	.66	
		3-06-89	22.0	2,600		.53	.07	1.5	
		4-10-89	19.0	2,300		.34	.06	1.5	
		7-08-89				2.7	.06	1.1	
		8-23-89	24.5	2,200		.43	.07	1.1	
		1-11-90	24.5	1,990					
Cheyenne-I (soil core)	124	4-09-88				0.19	0.11	2.3	0.02

Table 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites--*Continued*

		Carbon,	Cal-	Magne-		Potas-	Chlo-	Sulfate,	Fluo-	
Site name	_	organic,	cium,	sium,	Sodium,	sium,	ride,	dis-	ride,	Silica,
(source of	Depth	total	dis-	dis-	dis-	dis-	dis-	solved	dis-	dis-
sample)	(ft)	(mg/L	solved	solved	solved	solved	solved		solved	solved
sample)		as C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)			
Cheyenne-I	113		54	51	270	7.9	660	360		33
(suction lysimeter)			60	320	8.2	820	370		34
				67	320	8.4	820	380		32
							830	380		33
				62	320	7.3	780	370		33
							750	350		32
							690			
							670	340		33
							570	320		35
				41	270	6.6	110	310		34
				36	240	6.4	450	280		33
Cheyenne-I (soil core)	124		82	21	110	5.4	150	180	1.1	31
Site name (source of sample)	Depth (ft)	Boron, dis- solved (µg/L)	Iron, dis- solved (μg/L)	nese, dis- solve	tium dis- d solve	, ed	Zinc, dis- solved (µg/L)	Lithium, dis- solved (µg/L)	15N/14N, stable- isotope ratio	Alka- linity, lab (mg/L
		(µg/L)	(μβ/Σ)	' (μg/L) (μg/I	ر.)	(με/ Ε)	(µ6/L)	(permil)	as CaCO ₃
Cheyenne-I	113	600								103
(suction lysimeter	:)	690								97
		780								97
		740								100
		770								92
		8 5 0								105
		880								113
		800								113
		800								121
		830								122
										124
		800								134
										
Cheyenne-I (soil core)	124	460	240	340	1,000		21	30		115

Table 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites--Continued

Site name (source of sample)	Depth (ft)	¹ Date	Temper ature, water (°C)	- Speci condu anco (μS/cr	ct- (stan- e dard	CIS-	ic, amm di d sol L (m	tro- en, onia, is- ved g/L N)	Nitrogen, NO ₂ +NO ₃ , dissolved (mg/L as N)	Phosphorus, ortho, dissolved (mg/L as P)
Choctaw	131	6-02-88				0.58	0	02	0.47	
(suction lysimeter)	131	6-08-88				.47		03	1.0	
(suction Tysinictor)		7-13-88	24.0	1,12				01	.89	-
		8 - 08-88	24.0 	1,40		.48		02	.67	
		9-13-88	27.0	1,15				01	.58	
		10-14-88		1,13				02	.73	
		1-27-89	20.0	1,17		.36		04	.48	
		3-06-89	22.0	1,16		.28		02	. 5 9	
		4-10-89	21.0	1,10		.26		02 04	.70	
						.27		03	.70 .49	
		7-08-89	22.0					03	.49 .73	
		8-23-89		1,05		.48				
		1-11-90	24.0	1,04	0	.39		01	.12	
Cheyenne-II (neutron-access tub	119 e)	7-13-88	25.0	1,00	0	0.70	1.	3		
Cajon	257	2-06-89		66		0.75		55	3.0	
(suction lysimeter)		3-07-89	20.0	71		.20			3.1	
		4-12-89		1,50		1.0		18	13	
		8-22-89		49		.10	1.	8	1.1	
		1-11-90	23.0	5 1	0					
Site name (source of sample)	Depth (ft)	Carbon, organic, total (mg/L	Cal- cium, dis- solved	Magne- sium, dis- solved	Sodium, dis- solved	Potas- sium, dis- solved	Chlo- ride, dis- solved	Sulfate dis- solved (mg/L	ride, dis-	Silica, dis- solved
		as C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	as SO ₄		(mg/L)
Choctaw	131		90	20	110	4.1	190	200		32
(suction lysimeter)			75	20	110	4.1	190	210		33
			92	20	110	3.6	180	210		34
			89	20	110	3.5	190	190		33
			91	21	110	3.4	190	200		34
							180			
							190	210		36
							180	210		38
			94	21	120	3.6	190	200		36
			89	19	110	7.4	180	210		34
			91	19	110	3.7	190	200		34
							180	200		35
Cheyenne-II (neutron-access tub	119 e)									
							100			10
Cajon	257						130	55		12
Cajon (suction lysimeter)	257			 			130	55 51		16
	257	 	 	 	 	 		51 1 50	 	
	257	 15	 	 	 	 		51	 	16

Table 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites--*Continued*

Site name (source of sample)	Depth (ft)	Boron, dis- solved (µg/L)	Iron, dis- solved (µg/L)	Manga- nese, dis- solved (µg/L)	Stron- tium, dis- solved (µg/L)	Zinc, dis- solved (µg/L)		15N/14N, stable- isotope ratio (permil)	Alka- linity, lab (mg/L as CaCO ₃
Choctaw	131	470							86
(suction lysimeter)		480							85
(00000011 1) 021110001)		470							274
		460							87
		500							86
		490							88
		460							88
		450							88
		490							87
		480							89
		450							86
		480							87
Cheyenne-II (neutron-access tub	119 be)				1,100	87,000	28		
Cajon	257	60							63
(suction lysimeter)		20							88
(suction lysimeter)		190							89
		20							89
		20 							
Site name			Temper-	Specific	pH	Nitro- gen, organic,	Nitro- gen, ammonia,	Nitro- gen, NO ₂ +NO ₃ ,	Phos- phorus, ortho,
(source of sample)	Depth (ft)	Date	ature, water (°C)	conduct- ance (µS/cm)	(stan- dard units)	dis- solved (mg/L as N)	dis- solved (mg/L as N)	dis- solved (mg/L as N)	dis- solved (mg/L as P)
Apple Ranchos	240	6-03-88	24.5	1,370	6.2	0.35	0.05	1.5	< 0.01
(multiple-well		4-12-89	23.0	1,340			.21	1.7	<.01
monitoring site)		8-22-89	23.0	1,410	7.8		.01	1.7	.01
,	199	6-02-88	24.0	1,280		.26	.04	2.0	<.01
		4-12-89	23.0	1,360		.36	.04	2.9	<.01
		8-22-89	22.5	1,240	7.7		<.01	4.1	.01
	173	6-03-88	24.5	1,180	5.8	.29	.01	1.1	<.01
		4-12-89	23.5	1,240			.04	1.9	.04
		8-23-89	21.5	1,180	7 .7		.03	2.7	.03
	152	6-03-88	25.0	1,290		.33	.17	<.10	
Dinger	205	4 10 00	22.5	5 20			0.010	-0.10	0.02
Rincon	285	4-12-89	22.5	530	7.0		0.010	< 0.10	0.02
(multiple-well	000	8-23-89	23.5	895	7.9	0.20	<.010	.89	.02
monitoring site)	233	4-12-89	23.0	660	9.0	0.38	.020	<.10	.29
	200	8-23-89	23.0	720	8.0	.29	.010	1.0	.03
	200	4-12-89	23.0	930	7.0		.030	<.10	.11
		8-23-89	22.0	810	7.8	.24	.060	.18	.05

Table 14. Chemical analyses of ground water from selected residential study sites and multiple-well monitoring sites--*Continued*

Site name (source of sample)	Depth (ft)	Carbon, organic, total (mg/L as C)	Cal- cium, dis- solved (mg/L)	Magne- sium, dis- solved (mg/L)	Sodium, dis- solved (mg/L)	Potas- sium, dis- solved (mg/L	ride, dis- l solved	dis- solved d (mg/L	ride, dis- solved	
Apple Ranchos	240	 1.4	100 100	28 28	130 130	4.5 4.2	250 260	210 210	0.5 .5	30 30
(multiple-well monitoring site)		1. 4	100	28 27	130	4.2 4.7	250	210	.5 .5	30
momtoring site)	199		100	27	110	4.7 4.4	220	190	.6	30
	177	1.3	93	25	100	4.4	210	190	.5	29
			97	25	110	4.4	210	190	.5	30
	173		61	22	140	6.5	180	180	.7	27
		3.5	86	26	100	5.6	180	180	.6	31
			91	25	100	4.9	190	190	.7	32
	152									
Rincon 285		29	5.7	44	3.4	23	40	0.6	22	
(multiple-well			59	15	93	3.3	110	170	.8	27
monitoring site)	233	15	16	4.2	110	4.5	42	67	.9	22
			46	13	76	3.6	51	150	.8	29
	200	34	19	5.8	130	4.9	78	93	.9	23
			34	10	120	4.8	60	120	.8	24
Site name (source of sample)	Depth (ft)	Boron, dis- solved (µg/L)	Iron, dis- solved (µg/L)		tiu dis solv	m, s- ved	Zinc, dis- solved (µg/L)	Lithium, dis- solved (µg/L)	15N/14N, stable- isotope ratio (permil)	Alka- linity, lab (mg/L as CaCO ₃
Apple Ranchos	240	660	27	21	1,300)	8	31		88
(multiple-well		670	27	4		•				87
monitoring site)		680	5	<1						87
	199	590	9	220	1,200)	5	29		95
		620	48	3		•			8.10	91
			_						× 10	93
	170	590	5	<1	070			24		11/
	173	590	7	780	870)	4	24		116
	173	590 590	7 90	780 8	870)	4		 	100
	173 152	590	7	780	870)	4	24		
Pincon	152	590 590 580 	7 90 7 	780 8 83 	870)	4	24	 	100 96
Rincon		590 590 580 	7 90 7 51	780 8 83 	870)	4	24	 	100 96
(multiple-well	152 285	590 590 580 250 750	7 90 7 51 3	780 8 83 42 <1	870)	4	24	 	100 96 119 94
	152	590 590 580 250 750 450	7 90 7 51 3 90	780 8 83 42 <1 130	870)	4	24	 	100 96 119 94 180
(multiple-well	152 285	590 590 580 250 750	7 90 7 51 3	780 8 83 42 <1	870)	4	24	 	100 96 119 94

MOVEMENT OF WASTEWATER THROUGH THE UNSATURATED ZONE

In order to establish the effect of septic-tank wastewater on ground-water quality of the area, it was important to determine how fast wastewater is moving from seepage pits to the water table. It was thought that low nitrate concentrations in ground water throughout the area (table 1) indicated that wastewater from septic tanks installed during the 1970's and 1980's (the period when most development occurred) had not yet reached the water table. In this study, the movement of the wastewater wetting front in the unsaturated zone was determined using moisture-content profiles developed from analysis of soil cores, neutron logs, and suction-lysimeter data.

Several studies (Warrick and others, 1971; Ghuman and Prihar, 1980; and Young and others, 1992) have shown that wetting fronts move through the unsaturated zone at rates much faster than the solutes associated with the infiltrating water. Young and others (1992) theorized that the observed difference was caused by the displacement of pre-existing soil moisture by the applied water. They observed, in field experiments, that the difference between the arrival of the wetting front and the solute front was directly proportional to the water content of the unsaturated zone; larger differences (lags) were observed where the unsaturated zone had a higher preexisting water content. The rates of wastewater movement presented in this section of the report are representative of the wastewater wetting front; the movement of the actual wastewater will be slower.

MOISTURE-CONTENT PROFILES

Moisture content of the unsaturated zone was expected to be very low in areas unaffected by wastewater. A near-surface caliche layer present throughout most of the study area impedes percolation of the scant precipitation that occurs. This hypothesis was tested by selecting a new residence (Toltec) as the initial site to investigate. Field inspection of the soil cores collected at this site indicated that the unsaturated zone beneath the seepage pit indeed was very dry. Laboratory analyses indicate that nearly all the cores had moisture contents of less than about 5 percent, and about half had moisture contents of less than 2 percent (table 7). Therefore, the vertical extent of the wastewater wetting front can be deter-

mined qualitatively by ascertaining whether soil cores beneath an active seepage pit are comparatively wet or dry. This distinction is made with relative ease at new sites, especially in upper parts of the unsaturated zone; however, it is less readily made in lower parts of the unsaturated zone, especially near the water table where moisture content would normally be higher even in the absence of any wastewater. In addition, the water table has declined by almost 50 ft (fig. 7) in some areas, leaving a residual moisture in the unsaturated zone beneath the earlier water table. Distinguishing between wastewater-affected and natural (unaffected) soil zones soley on the basis of soil-moisture content is further complicated by the wide range in grain-size distributions that exists throughout the study area and with depth at individual sites.

Moisture-content profiles were prepared from analyses of soil cores collected between land surface and the water table at five sites (Cheyenne-I, Choctaw, Kiowa, Cheyenne-II, and Cajon) where seepage pits had been in operation for at least 2 years. The profiles are illustrated graphically in figure 13 presented later in this report. At all five sites, both field and laboratory determinations indicate that the entire unsaturated zone beneath the seepage pits was moist. Moisture contents in most soil cores exceeded 10 percent, except in cores containing predominantly sand and gravel (table 7). The presence of comparatively high moisture contents throughout the profiles suggests that the wastewater wetting front had reached the water table at all five selected sites. Chemical analyses of samples from the Cajon site collected after 1991 indicate, however, that wastewater had reached a depth of at least 199 ft, but it had not yet reached the water table, which was at least 260 ft below land surface in 1991. Preliminary results from the resumption of water-quality monitoring after June 1993 at the Chevenne-I site also suggest that wastewater may not yet have arrived at the three lowermost lysimeters (equal or deeper than 92.5 ft) in 1988 and (or) that these lysimeters are near or beneath a recently declining water table. A minimum value for the rate of vertical movement of the wastewater wetting front can be estimated at each site by dividing thickness of the unsaturated zone beneath the seepage pit by length of time that the seepage pit had been in service. These calculated minimum vertical flow rates of the wastewater wetting front, which are shown in the table that follows, served as this study's earliest estimates.

Residential study site	Thickness of unsaturated zone (ft)	Age of septic tank as of April 1988 (years)	
Cheyenne-I	87	5	0.05
Choctaw	99	10	.03
Kiowa	125	9	.04
Cheyenne-II	92	1.2	.21
Cajon	213	10	.06

Rates determined later with greater precision, using methods that followed movement of the wastewater (neutron logs and lysimeter samples), confirmed that actual rates generally were greater.

The finding of wastewater (comparatively high moisture content) in soil cores collected from holes drilled about 5 to 7 ft from the center of the seepage pit at established sites was the first indication in this study that there may be substantial lateral movement of wastewater as well as vertical movement. The extent of this lateral wastewater movement was further delineated by drilling an additional hole 25 ft from the seepage pit at the Cheyenne-I site and 50 ft from the seepage pit at the Choctaw site. Moisture content of soil cores from both holes was similar to moisture contents of cores from holes adjacent to the respective seepage pits (table 7). Water-quality analyses of soil cores from the Chevenne-I lateral hole (table 7) and of one suction-lysimeter sample from the Choctaw site (table 10) also are similar to analyses from holes adjacent to the seepage pits. This confirms that wastewater can move laterally 50 ft or more from seepage pits in some locations. Additional discussion of lateral movement based on wastewater discharge and constraints from mass-balance calculations at the Cajon site is given by Schroeder and others (1993).

Lateral flow can occur in the unsaturated zone wherever a coarse-textured layer of high permeability overlies a finer textured layer of low permeability. With continued infiltration, ponding (a perched water table) occurs just above the boundary of the impeding finer layer (Hillel, 1971, p. 143). Lateral flow also can take place where fine-textured soil overlies a layer of coarse-textured soil (Hillel, 1971, p. 143). Any discontinuities in texture can result in the development of preferential flow paths in the unsaturated zone (Steenhuis and others, 1991); the discontinuities, by implication, could be a major source of variability

among water-quality data obtained from suction lysimeters. Finally, low-permeability caliche layers and other cemented layers also can cause lateral movement of wastewater.

NEUTRON MOISTURE LOGS

Moisture-content profiles were obtained from neutron moisture logs in order to more directly calculate rates of vertical movement of the wastewater wetting front. This approach involved collecting numerous neutron moisture logs from the three new sites (Toltec, Vasquez, and Little Beaver) and one established site (Chevenne-II). Selected moisturecontent profiles that were obtained are shown in figure 12. Vertical movement of the wastewater wetting front is inferred from changes in successive moisture-content profiles. As previously stated, moisture content of the unsaturated zone is very low in areas unaffected by wastewater. Therefore, increasing moisture content in more recent profiles indicates vertical movement of the wastewater wetting front.

The vertical rate of movement of the wastewater wetting front is calculated by dividing the distance the wetting front has moved by the elapsed time (traveltime) between consecutive neutron moisture logs (table 15). Estimated rates range from 0.09 ft/d for the fine-grained consolidated soil between 48 and 67 ft at Little Beaver to 0.79 ft/d for the coarsegrained unconsolidated soil between 35 and 59 ft at Vasquez. In most cases, the estimated rates decrease with increasing depth. In fact, during the period of neutron moisture logging at Little Beaver, May 1988-June 1989, little if any increase in moisture content was measured at depths below about 70 ft (fig. 12C). Inspection of the geologic log for this site indicates that the soils are cemented (consolidated) from this depth to the bottom of the hole. The presence of these cemented soils would be expected to impede vertical movement of the wastewater.

As discussed previously, temporal changes in the moisture-content profiles indicate that vertical movement of the wastewater wetting front initially is transient. However, movement of the wastewater wetting front seems to approach steady-state conditions after the seepage pits have been used for some time, as indicated by very little change in successive moisture-content profiles. A steady-state condition is

Table 15. Comparison of wastewater vertical-movement rates determined from neutron moisture logs and from suction lysimeters [Geologic unit: Qoa, older alluvium; Qof, older fan deposits; Qol, old lake and lakeshore deposits. ft, foot; ft/d, foot per day]

				Data	Data from neutron moisture logs	from neutron moisture logs	são		Data from suction lysimeters	on lysimeters	
Site name	Geologic	Lithologic description	Degree of consolidation	Depth of interval monitored (ft)	Vertical distance traveled (ft)	Travel- time (days)	Rate of vertical movement (ft/d)	Depth of interval monitored (ft)	Vertical distance traveled (ft)	Travel- time (days)	Rate of vertical movement (ft/d)
Toltec		Gravelly sand with some silt and trace of clay.	Consolidated Unconsolidated	44-64	20	28	0.71	40-50	10	92	0.11
	Qoa							50-73	23	345	0.07
	J∞		Moderately	64-72	8	66	0.12				
			consolidated	72-88	91	111	0.14				
		Gravelly sand with some									
Vasquez		silt.		35-59	19	24	0.79				
		Sand with some gravel and									
	\$	silt.	Unconsolidated					43-51	8	14	0.57
		Silty sand with some gravel and clay.						51-71	20	20	1.00
				59-71	12	21	0.57				
		Silty sand with clay.		71–86	15	20	0.75				
Little	oo'	Sandy silt with some gravel	Unconsolidated	42-48	9	56	0.11	31.5-40	8.5	96	0.09
Beaver		and clay		ţ	ç	ç	ć	ţ	;	1	i d
	.	C:16. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Moderately	48-6/	6	203	60:0	40-6/	7.7	345	80.0
	Š	gravel and clay.	Well								
			consolidated					11-19	10	141	0.07
								11.10	2.		30.0

Figure 12. Temporal changes in soil-moisture content and vertical variation in grain size at selected residential sites.

approached within the upper 80 ft at all the recently occupied sites in less than 1 year (fig. 12). Moisturecontent profiles at the established site (Cheyenne-II) also reflect steady-state conditions. (Some changes in the Cheyenne-II profile are believed to be due to rewetting of the backfill that was placed around the neutron-access tube during its installation; this rewetting is most evident (fig. 12) at depths at which bentonite was used as a seal.) Steady-state conditions are established rapidly beneath seepage pits because wastewater discharge to the seepage pits remains nearly constant on a daily basis.

SUCTION LYSIMETERS

Sampling of suction lysimeters provides yet another estimate for the vertical rate of movement of the wastewater wetting front. The approach involved measurements from the periodic sampling for water quality in the suction lysimeters installed at multiple depths beneath the three recently constructed seepage pits (Toltec, Vasquez, and Little Beaver). Very little, if any, water could be extracted from the suction lysimeters prior to arrival of the wastewater wetting front. The vertical rate of movement of the waste-

B VASQUEZ SITE

Figure 12.--Continued.

water wetting front is calculated by dividing the vertical distance between suction lysimeters at successive depths by the elapsed time between the first yield of water from suction lysimeters at successive depths. The estimated rates for the different sites are compared (table 15) with rates obtained from neutron moisture logs.

The vertical rate of movement of the wastewater wetting front estimated using the suction-lysimeter data ranged from 0.07 to 1.00 ft/d; this range is

similar to the range (0.09 to 0.79 ft/d) estimated from neutron moisture logs (table 15). The lowest rate determined using either method is 0.07 ft/d for the unconsolidated, poorly sorted older alluvium and moderately consolidated older fan deposits at Toltec and the well-consolidated older fan deposits at Little Beaver. The highest rate is 1.0 ft/d for unconsolidated silty sand and gravel of the old lake and lakeshore deposits at Vasquez. If these are considered the minimum and maximum rates, respectively, for the movement of the wastewater wetting front in the

LITTLE BEAVER SITE

Figure 12.--Continued.

study area, then the length of time for the wastewater wetting front to travel 150 ft (the average depth to ground water in the study area) ranges from almost 6 months to almost 6 years. These results indicate that the wastewater wetting front from nearly all seepage pits constructed prior to the mid-1980's is likely to have reached the water table, where it is shallower than the average depth of 150 ft, by the end of this study in 1990.

In summary, moisture-content profiles, neutron moisture logs, and suction-lysimeter data all indicate

that the wetting fronts resulting from wastewater discharge to seepage pits in the study area reach the underlying water table. Estimated rates for the movement of the wastewater wetting front range from a low of 0.03 ft/d (a minimum estimate based on profiles obtained from direct measurement of soilmoisture content) at the Choctaw site to a high of 1.0 ft/d (estimate based on suction-lysimeter method) at the Vasquez site. Actual vertical rates of wastewater (solute) movement probably are significantly less than these estimates.

Figure 12.--Continued.

CONCENTRATION OF SELECTED WASTEWATER CONSTITUENTS IN THE UNSATURATED ZONE

Septic-tank wastewater is a major potential source of ground-water contamination in the study area. A septic tank separates floating and settleable solids (sludge) from wastewater while discharging the clarified wastewater into a drainfield or seepage pit. The sludge that accumulates at the bottom of the septic tank is decomposed by bacteria. The resulting wastewater contains high concentrations of nitrogen, bacteria, and organic carbon. As the wastewater moves through the unsaturated zone, the concentrations of these constituents—and thus the severity of ground-water contamination—can be greatly affected by physical, chemical, and biological processes. In

this study, the concentration and changes in concentration of selected wastewater constituents (including nitrogen, total bacteria, fecal coliform, and selected organic compounds) were investigated as wastewater moved from the septic tank to the underlying water table at eight sites.

NITROGEN

Septic-tank wastewater is known to contain high concentrations (40 to 80 mg/L) of nitrogen, (Bouwer, 1978, p. 413). As wastewater moves from the septic tank to a drainfield or seepage pit, and subsequently through the underlying unsaturated zone, both concentration and chemical form (speciation) of nitrogen in the wastewater change. The nitrogen

species are interrelated by a complicated series of reactions that collectively constitute the nitrogen cycle. This section of the report includes a discussion of some of the more important reactions of the nitrogen cycle, changes in concentrations of the various nitrogen species as wastewater moves from the septic tank through the unsaturated zone, and possible reasons for the observed changes.

NITROGEN CYCLE

Because of the importance of nitrogen to the biological cycle, numerous researchers discuss the nitrogen cycle in great detail (Bartholomew and Clark, 1965; and National Research Council, 1978, for example). This section of this report emphasizes the processes of the nitrogen cycle that are important to an understanding of the accumulation of nitrogen and its transformation in wastewater as the wastewater moves from the septic tank through the unsaturated zone. The reader is referred to the references that are given above for a more detailed explanation of the complete nitrogen cycle.

Nitrogen in septic-tank is wastewater predominantly in the form of ammonia (NH₃) and organic nitrogen. (In this report, the term "ammonia" is used for the un-ionized form of ammonia (NH₃) and, collectively, for the cationic form (NH₄⁺) plus NH₃ when there is no need or intention to distinguish between these forms. "Ammonium" is used specifically to indicate the cationic form.) Under aerobic (oxic) conditions, organic nitrogen in wastewater is converted to ammonia, which, along with ammonia already present in the wastewater, can be oxidized to nitrate (NO₃). The conversion is a two-step biological process known as mineralization. The first step (conversion of organic nitrogen to ammonia) is referred to as ammonification and can be accomplished both by aerobic bacteria, which exist in the presence of oxygen, and anaerobic bacteria, which exist in the absence of oxygen. The second step (conversion of ammonia to nitrate) is referred to as nitrification and is carried out by several different groups of aerobic microorganisms. Nitrification also is a two-step process: the first group of bacteria, predominantly Nitrosomonas, oxidize ammonia to nitrite (NO₂⁻), and the second group, predominantly Nitrobacter, oxidize the nitrite to nitrate (National Research Council, 1978, p. 33). Nitrite usually does not accumulate during nitrification because it is oxidized as rapidly as it is formed.

Nitrogen can be removed from wastewater by sorption and ion exchange, ammonia volatilization, incorporation into cell biomass, plant-root uptake, and denitrification. As wastewater moves through the unsaturated zone, ammonium can be removed by adsorption (including ion exchange) onto soil particles. If the wastewater is sufficiently alkaline (that is, has high pH), some ammonia may be lost to the atmosphere by volatilization of the gas. This process is more likely to occur in the seepage pit than in soil beneath the pit. Organic nitrogen may be immobilized in soils by adsorption and by incorporation into cell biomass as a result of biological activity. In most soil environments, nitrogen also is removed by plant-root uptake. In this study, however, plant-root uptake is not a significant factor because wastewater is discharged by seepage pits below the root zone.

The removal of nitrogen from wastewater in the study area apparently can be attributed, in part, to denitrification. Denitrification is the biochemical reduction of nitrate and nitrite to gaseous nitrogen in the form of molecular nitrogen and (or) nitrogen oxides. This process is carried out under anoxic conditions by many types of bacteria that can use the oxidized form of nitrogen as a terminal electron acceptor for respiration where oxygen has been depleted. Denitrification occurs rapidly and completely in soils in which conditions are anaerobic (anoxic) and organic matter is readily available (National Research Council, 1978, p. 44). Continual but slow loss of nitrogen also may occur in moist, fine-textured soils in which conditions generally are oxidizing but anoxic microenvironments are present (Broadbent and Clark, 1965).

SEPTIC-TANK WASTEWATER

The use of water within residences results in an increase in dissolved concentrations of nitrogen and many other chemical constituents in the wastewater. The magnitude of the increase was calculated by subtracting concentrations in tapwater from concentrations in wastewater sampled from the septic tank or seepage pit at six of the sites (table 16). The calculated differences show a rather large variability, particularly for some of the major ions and boron, among residences. For comparison, calculated differences between wastewater and tapwater concentrations from 3 years of monitoring at a rural residence near Fresno, California (Nightingale and McCormick, 1985), also are included in table 16.

Table 16. Calculated increase (or decrease) in concentration of chemical constituents in water during household use. (Calculated by subtracting concentrations in tapwater (given in table 11) from concentrations in septic-tank wastewater (table 12))

[Wastewater concentrations used for Vasquez are seepage pit results for samples collected 6-8-88. Data from near Fresno are based on monitoring during 1977-80 at a rural residence occupied by two persons (Nightingale and McCormick, 1985). --, no data; µS/cm, microsiemen per centimeter at 25 degrees Celsius; mg/L, milligram per liter; µg/L, microgram per liter; <, less than value shown]

Constituent				Site			
	Cheyenne-I	Vasquez	Choctaw	Kiowa	Cheyenne-II	Cajon	Fresno
Specific conductance							
(μS/cm)	910	494	523	243	1,174	528	354±10
Nitrogen (mg/L)	¹ 52	33	46	21	49	62	15±1.5
Orthophosphate-phosphorus							
(mg/L)	7.2	18	1.2	4.9			6.0 ± 0.5
Organic carbon (mg/L)		17	42	10	40	63	
Calcium (mg/L)		13	13	8	23		11±3
Magnesium (mg/L)		1.8	2.8	0	6		2±1
Sodium (mg/L)		54	40	17	158		29±1
Potassium (mg/L)		10	13	4.9	9.9		9±1
Chloride (mg/L)		31	31	9	62		19±1
Sulfate (mg/L)		20	36	-10	130		5±2
Alkalinity as calcium							
carbonate (mg/L)	373	162	198	97	408		160±10
Fluoride (mg/L)	0	.2	.2	.1	.2		
Silica (mg/L)	4	10	6	3	16		6±2
Boron (μg/L)	1,300	30	200	-20	640		
Iron (μg/L)		60	390	270	180		
Manganese (µg/L)		38	39	20	31		
Strontium (µg/L)		90	80	30	360		
Zinc (μg/L)		<2	50	20	17		
Lithium (µg/L)		-4	-2	-3	6		

¹Ammonia and organic nitrogen only.

The small range observed in the concentrations of nitrogen, for which the coefficient of variation is 10 percent, and other chemicals during a long period of monitoring at the Fresno residence suggests a relatively constant pattern of water usage among bath, kitchen, laundry, and toilet facilities. Some rather large site-to-site differences observed in this study are believed to be caused primarily by differences in the relative contribution from each of these household uses. For example, the large increase in boron in wastewater at Cheyenne-I and Cheyenne-II suggests greater use of laundry detergents (softeners) in these residences where the dissolved-solids and alkaline-earth (hardness) concentrations of the tapwater are comparatively high.

For dissolved nitrogen, the chemical constituent of greatest interest in this study, site-to-site differences are much smaller than for other constituents (table 16). Increases in total-nitrogen concentrations range from 21 mg/L at Kiowa to 62 mg/L at Cajon

(table 16). Because total nitrogen concentrations generally were less than 1 mg/L in the tapwater, the calculated increases are almost the same as the septictank wastewater concentrations, which ranged from 22 mg/L at Kiowa to 63 mg/L at Cajon. For the five sites at which wastewater from the septic tank was sampled (Cheyenne-I, Choctaw, Kiowa, Cheyenne-II, and Cajon), dissolved-nitrogen concentrations average 47 mg/L (table 17).

Almost all the dissolved nitrogen in the septictank and seepage-pit wastewater was in the form of organic nitrogen and ammonia (tables 12 and 17), and little or no nitrate is present in any of the samples. These results are consistent with the absence of oxygen. In addition, methanethiol concentrations ranging from 2 to 11 µg/L were found in wastewater samples during analysis for purgeable (volatile) organic compounds. The presence of methanethiol, which implies not only absence of oxygen but also presence of hydrogen sulfide, indicates that the waste-

Table 17. Median concentrations of selected constituents in tapwater, septic-tank, seepage-pit, and suction-lysimeter samples

[From data in table 11 (tapwater), table 12 (septic tank and seepage pit), and table 10 (suction lysimeters). ft, foot; mg/L, milligram per liter; μ S/cm, microsiemen per centimeter at 25 degrees Celsius; <, less than reporting limit]

	•		-					_	
Source of sample	Depth of lysim- eter (ft)	Specific conduct- ance (µS/cm)	Nitrogen, NO ₂ + NO ₃ (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitrogen, ammonia + organic (mg/L as N)	Nitrogen, organic (mg/L as N)	Nitrogen, (mg/L as N)	Chloride (mg/L)	Organic carbon (mg/L as C)
				Toltec site	(new)				
Tapwater		181	0.570	<0.010	<0.20	<0.20	0.57	4.6	
Septic tank									
Seepage pit									
Suction lysimeter	33	692	.280	5.85	12	6.2	12	23	
	40	702	8.00	.030	.90	.87	8.9	20	
	50	770	17.0	.020	1.3	1.3	18	23	
	73	710	13.5	.035	1.0	.96	15	41	
			Chey	enne-I site (established))			
Tapwater		780	1.30	<0.010	<0.20	<0.20	1.3	100	
Septic tank		1,690			53		53	180	
Seepage pit									
Suction lysimeter	37	2,000	41.0	.030	1.0	.97	42	220	3.6
	42	2,300	30.0	.050	1.6	1.6	32	260	5.4
	63	1,250	31.5	.025	.90	.88	32	145	2.5
	73	2,140	33.0	.100	1.3	1.2	34	240	4.1
	92.5	2,250	4.80	.060	1.7	1.6	6.5		
	106	1,290	6.70	.030	1.2	1.2	7.9	280	4.0
	¹ 113	2,300	1.10	.070	.60	.53	1.7	510	6.9
				Vasquez site	e (new)				
Tapwater		202	1.10	< 0.010	<0.20	< 0.20	1.1	7.7	
Septic tank									
Seepage pit		822	3.9	28.5	24	<.10	28	30	24.5
Suction lysimeter	35	1,150	5.00	.030	. 9 0	.87	5.9	71	
	43	1,030	<.100	1.54	.80	.80	.80	34	
	51	900	6.40	.015	.60	.58	7.0	36	
	71	840	4.30	.030	.70	.67	5.0	30	
			Cho	ctaw site (e	stablished)				
Tapwater		212	0.440	0.010	<0.20	<0.20	0.44	8.2	
Septic tank		735	.260	6.10	46	40	46	39	42
Seepage pit									
Suction lysimeter	33	1,550	6.40	.050	.80	.75	7.2	88	
	48	1,560	11.5	.050	1.3	1.2	13	110	
	80	1,010	20.5	.040	1.4	1.4	22	70	
	² 131	1,130	.630	.020	.40	.38	1.0	190	

Table 17. Median concentrations of selected constituents in tapwater, septic-tank, seepage-pit, and suction-lysimeter samples--*Continued*

Source of sample	Depth of lysim- eter (ft)	Specific conduct- ance (µS/cm)	Nitrogen, NO ₂ + NO ₃ (mg/L as N)	Nitrogen, ammonia (mg/L as N)	Nitrogen, ammonia + organic (mg/L as N)	Nitrogen, organic (mg/L as N)	Nitrogen, (mg/L as N)	Chloride (mg/L)	Organic carbon (mg/L as C)
			Lit	tle Beaver s	ite (new)				
Tapwater		345	0.740	<0.010	<0.20	<0.20	0.74	14	
Septic tank									
Seepage pit									
Suction lysimeter	31.5	2,500	20.0	.070	1.1	1.0	21	89	
•	40	1,100	4.60	.030	.45	.42	5.0	80	
	67	980	20.0	.030	.70	.67	21	81	
	77	2,600	20.0	.220	3.6	3.4	24		
			Kio	wa site (est	ablished)				
Tapwater		402	0.790	<0.010	<0.20	<0.20	0.79	28	
Septic tank		645	.20	18.0	22	4.0	22	37	10
Seepage pit									
Suction lysimeter	32	1,290	9.60	.030	.75	.72	10	78	
•	67.5	830	15.5	.025	.50	.48	16	48	
	107.5	1,220	15.5	.085	1.8	1.7	17	66	8.3
	149	825	1.30	.040	1.3	1.3	2.6	83	
			Cheye	nne-II site ((established))			
Tapwater		736	1.20	<0.010	<0.20	<0.20	1.2	98	
Septic tank		1,910	0	31.0	50	19	50	160	40
Seepage pit		1,890	<.100	8.90	60	51	60	160	37
Suction lysimeter	10								
•	67	1,570	43.0	.055	1.4	1.3	44	190	
	98								
			Ca	jon site (est	ablished)				
Tapwater		222	0.890	0.030	<0.20	<0.20	0.89	6.8	.6
Septic tank		750		44.0	63	19	³ 40		63
Seepage pit		747		41.0	40	<.10	³ 63		43
Suction lysimeter	35	1,040	31.0	.055	1.7	1.6	33	68	
•	70	720	29.0	.230	1.6	1.4	31	35	3.9
	97.5	530	32.0	.300	1.8	1.5	34	33	6.6
	130	710	34.	.330	1.4	1.1	35	35	15
	160	1,200	35.0	.440	1.7	1.3	37		7.6
	199	580	15.0	.105	.70	.60	16	50	
	243	2,280	1.10	.190	1.2	1.0	2.3	71	6.1

¹Includes only analyses when water table was above suction lysimeter (11-27-89 to 1-11-90).

²Suction lysimeter was below water table.

³NO₂+NO₃ not analyzed. Nitrogen assumed to be equal to ammonia + organic nitrogen.

water is strongly reducing. Although wastewater samples were collected only once, the wide variation among sites in relative proportion of organic nitrogen and ammonia (tables 12 and 17) is consistent with rapid conversion of organic nitrogen to ammonia (ammonification) by bacteria (Canter and Knox, 1985, p. 75–76; and Khanbilvardi and Long, 1985).

NITROGEN CONCENTRATIONS AND TRANSFORMATIONS

This section of the report documents changes in nitrogen concentration and the transformation among different species of nitrogen as domestic wastewater moves from the septic tank through the underlying unsaturated zone. Nitrogen concentrations were determined in pore water (soil-core extracts) (table 7) and suction-lysimeter samples (table 10) collected at eight study sites to document the changes. The nitrate-N concentrations of soil-core extracts and suction-lysimeter samples collected at the eight study sites are shown graphically in figure 13. Also shown are grain-size distributions, soil-moisture content, chloride concentrations of soil-core extracts and suction-lysimeter samples, and numbers of nitratereducing bacteria present in soil cores for selected sites. Chloride concentrations are included because chloride is present in septic-tank wastewater and it is physically conservative and biologically unreactive, thereby making it a useful tracer of wastewater movement and transformations in the unsaturated zone. Median concentrations of the different nitrogen species found in the suction-lysimeter samples are given in table 17. Ideally, the last sample collected would be anticipated to be the most representative of actual concentrations in the unsaturated zone; however, median values are chosen instead to minimize any biases resulting from a single anomalous result or from failure of the earliest data to yet reflect steady-state conditions as noted previously in the "Pore-Water Quality" section.

As septic-tank effluent is discharged to a new seepage pit, it percolates readily through the base of the pit into the surrounding soil, leaving behind only a small quantity of wastewater in the seepage pit. However, after operation of the disposal system for a period of time, microbial activity in the anaerobic environment that prevails in the wastewater quickly results in biological clogging of the cinder blocks and soil immediately adjacent to the pit's wall (Stewart and others, 1979, and references therein). Progressive clogging causes the wastewater level to rise in the seepage pit until it reaches a zone of sufficiently high permeability that it can't be sealed by microbial activity, and most of the wastewater then percolates

through the rapid-flow pathway at this level (Sinton, 1986). For the purposes of this study, this level is referred to as the active discharge level of the seepage pit. This active discharge level ranges from the bottom of the seepage pit at new residences such as Vasquez (about 35 ft below land surface) to about 20 ft below land surface at the established sites. The unsaturated zone above the active discharge level is unaffected by septic-tank wastewater. This zone contains high concentrations of nitrate and chloride in soil moisture (table 7 and fig. 13) that probably are related to the caliche layer present in most of the study area. The high nitrate and chloride concentrations in this shallow zone are characteristic of shallow desert soils where soil-moisture content is very low and leaching is minimal.

With the exception of only a few samples collected directly beneath the seepage pits, dissolved nitrogen in the unsaturated zone is almost entirely in the form of nitrate (tables 7, 10, and 17). This indicates that reduced nitrogen (ammonia and organic nitrogen) present in the septic-tank wastewater is rapidly nitrified by microorganisms in soil near the seepage pit. Nitrification is an aerobic process that requires oxic conditions. Measured oxygen concentrations of about 19 volume percent (air is 21 percent) in soil gas from the unsaturated zone at Chevenne-I and the general observation of brown coloration (as opposed to gray or olive coloration) of nearly all the cores recovered at all sites suggests that the unsaturated zone is well aerated. The main bacterial species responsible for nitrification (Nitrosomonas and Nitrobacter) were sought but were not detected in core samples (table 9), possibly because the reaction takes place in such a narrow zone that appropriate samples close enough to the seepage pit were not obtained.

Careful measurement of pH on selected core extracts provides additional indirect evidence for nitrification. The overall stoichiometric reaction represented by

$$NH_4^+ + 20_2 \rightarrow NO_3^- + 2H^+ + H_2O$$
 (2)

indicates that nitrification is accompanied by the release of hydrogen ions (acidity). Accurate measurement of pH in the deionized-water extracts of core material was difficult to achieve because of poor buffering in the low-ionic-strength solutions, (voltage) drift of the electrode, and the potential for carbon dioxide exchange with the atmosphere. Improved reliability was obtained after deionized water equilibrated with atmospheric carbon dioxide (pH = 5.6-5.7) was used as a secondary

Figure 13. Vertical variation in selected physical properties and in concentrations of selected chemical and biological constituents at residential sites.

standard to calibrate the pH electrode. For the purpose of distinguishing those core extracts in which this more exacting procedure was followed, as opposed to those in which only commercial pH standards were used, the more reliable pH data are listed to hundredths, rather than tenths, in table 7. Results show that pH in the extract from 13-15 ft at Choctaw, 17-19 ft at Kiowa, and 27-29 ft at Chevenne-II is about 1 unit less than average pH below these depths. The decrease in pH persists over only a narrow depth interval because of rapid neutralization by reaction with the soil. On the basis of estimated wastewater movement rates of 0.07 to 1 ft/d (from table 15), it is apparent that nitrification and subsequent neutralization of the acid generated must take no longer than a few weeks.

At all the sites, total-nitrogen concentrations were lower in samples from suction lysimeters emplaced beneath the seepage pit than in septic-tank wastewater (table 17). For the five established sites (Cheyenne-I, Choctaw, Kiowa, Cheyenne-II, and Cajon), the dissolved-nitrogen concentration for the suction lysimeters closest to the bottom of the seepage pit averaged 27 mg/L, about 40 percent less than the average nitrogen concentration of 46 mg/L in wastewater (septic tank and seepage pit) at the same sites (table 17). Wastewater sampling was not sufficiently frequent and lysimeters were not spaced sufficiently close to permit a precise mass-balance estimate of nitrification extent. Studies elsewhere, however, virtually all the dissolved suggest that ammonia present in the septic-tank wastewater is

Figure. 13 Continued.

ultimately transformed to nitrate (Stewart and others, 1979, and references therein). For example, Walker and others (1973a,b) found that the concentration of nitrate in a sandy drainfield below a biologically encrusted sublayer was approximately equal to that of total nitrogen in the septic-tank wastewater

and, also, that the oxygen content of the soil gas was 19 percent, as in this study. In these other studies, septic-tank wastewater was discharged to drainfields, rather than into seepage pits. The results of this study suggest that significant nitrogen is removed in the seepage pit and (or) in the soil immediately adjacent

Figure 13. Continued.

to the seepage pit. Possible mechanisms for nitrogen reduction are partial denitrification, physical loss of nitrogen in the reduced form, volatilization of ammonia (from the seepage pit), incorporation in organic matter deposited on the walls and floor of the seepage pit, sorption of ammonium and organic nitrogen on the soil, and ion exchange of ammonium on clays.

Figure 13. Continued.

As the septic-tank wastewater moves from the seepage pit through the unsaturated zone, nitrification seems to continue, at least for some depth, as indicated by some increase in nitrate concentration with increasing depth at most of the sites (tables 7 and 17, fig. 13). However, this trend is suddenly reversed above the water table at the Choctaw, Kiowa, and Cajon sites and opposite moist fine-

Figure 13. Continued.

Figure 13. Continued.

grained deposits at the Cheyenne-I and Cheyenne-II sites (fig. 13). At all these sites, nitrate-N concentrations decreased to less than 10 mg/L in both soil-

core and suction-lysimeter samples (tables 7 and 17). At Choctaw, Kiowa, and Cajon, nitrate-N concentrations were about 1 mg/L near the water table

Figure 13. Continued.

(tables 7 and 17), although more recent evidence discussed later attributes the very low nitrate concentration at depths below 200 ft at Cajon to the absence of wastewater below this depth. Although monitoring has only recently resumed at the Cheyenne-I site, scant data obtained so far also

suggest a similar possible explanation, and (or) dilution with ground water, for the nitrate-concentration profile there as well.

Three explanations for the observed decrease in nitrate concentration are (1) microbial nitrate reduc-

tion, (2) mixing of the wastewater with low-nitrate ground water in the capillary fringe, and (3) the wastewater wetting front has reached the water table. but the actual wastewater has yet to arrive. If microbial nitrate reduction were responsible for the reduced nitrate concentrations, chloride concentrations would remain unchanged (because chloride is biologically unreactive) and the nitrate-to-chloride ratio would decrease. Shallow ground water at Chevenne-I and Choctaw had higher chloride concentrations than did wastewater in the unsaturated zone (table 17). Therefore, if mixing with ground water were solely responsible for the reduced nitrate nitrate-to-chloride concentrations. ratios decrease and chloride concentrations would increase. (Although the principle is the same, the pattern differs at Cajon because the chloride concentration is much lower in ground water than in the wastewater.)

Inspection of available data (tables 7 and 17, fig. 13) indicates that chloride concentrations remain relatively unchanged; whereas, nitrate-to-chloride ratios decrease dramatically opposite the zones where nitrogen concentrations also decrease. Thus, these data suggest that microbial nitrate reduction might be partly responsible for the observed decrease in nitrate concentrations. The presence of high numbers of nitrate-reducing bacteria opposite zones where nitrate concentrations also decrease at the two sites where bacterial analyses were performed (Cheyenne-I and Cajon) (fig. 13, table 9) lend further support to this inference. It should be noted, however, that the presence of these bacteria indicates only that the potential for nitrate reduction exists. The numbers found cannot be used to infer in situ activity—that is, the degree to which possible nitrate removal proceeds.

The fact that nitrate concentrations decreased a significant distance above the water table at the Cheyenne-I and Cheyenne-II sites (fig. 13) would seem to preclude the possibility of ground-water mixing at these sites. However, the results of ongoing monitoring at Cajon since 1991 described by Schroeder and others (1993) do raise the possibility of a similar or related explanation for the low nitrate concentrations at depth at the Chevenne sites. The soil surface is commonly soaked with tapwater from the local residence prior to drilling a hole for installation of a seepage pit. Any residual soil moisture (prior to discharge of wastewater) plus this added water would be "pushed" ahead (piston flow) of the advancing wastewater front, as the results at Cajon have shown. If this was the source of water in the lysimeters at 92.5 and 106 ft (the lysimeter at 113 ft was below the water table in 1988-89) at Cheyenne-I, analyses in table 7 indicate that this soil moisture should be lower

in chloride than is local ground water, as was found to be the case. There is a substantial increase in nitrate in the last samples collected in July and August 1989 for analysis from the lysimeters at 92.5 and 106 ft, respectively (table 10). Unfortunately, sample collection then was terminated at Cheyenne-I and it was not resumed until June 1993. Preliminary results from the resumed monitoring have confirmed the existence of high nitrate concentrations in the lysimeters at 92.5 and 106 ft, as well as in the lysimeter at 113 ft (the water table had subsequently declined below 113 ft). Sampling is continuing at Cheyenne-I for analysis of nitrate and nitrogen isotopes as well as a number of chemical constituents.

DENITRIFICATION

As stated above, denitrification may be partly responsible for the decrease in nitrate concentration as wastewater moves through the unsaturated zone in the study area. Results of standard plate counts in table 8 show an abundance of aerobic, heterotrophic bacteria in the unsaturated zone. Degradation of organic carbon by these microorganisms probably is the main source of increased carbon dioxide, whose content is 2.94 volume percent in soil gas from 47 ft at Cheyenne-I (air is 0.03 percent). As long as molecular oxygen is present, the bacteria will use it as a terminal electron acceptor. In the absence of oxygen, large and diverse group of nitrate-respiring heterotrophs, including Pseudomonas, can nitrogen instead of oxygen as the terminal electron acceptor. The pathway for denitrification can be represented by a series of steps as follows:

$$\begin{array}{c}
NO_{3} \\
\text{nitrate} \xrightarrow{NO_{2}} \\
\text{nitrite} \xrightarrow{NO_{2}} \\
\text{oxide} \\
\text{oxide}
\end{array}$$

$$\begin{array}{c}
N_{2}O \\
\text{N}_{2}O \\
\text{oxide}
\end{array}$$

$$\begin{array}{c}
N_{2}O \\
\text{oxide}
\end{array}$$

The multiple steps in this process are carried out by separate bacteria, and denitrification refers only to those later steps that produce the gaseous end products (NO, N₂O, and N₂); however, the term denitrification commonly is loosely applied to the entire process of nitrate reduction, except when the end product is ammonia.

Although there are nitrate-respiring microorganisms capable of reducing nitrate to ammonia, ground-water studies in other areas suggest that this reaction is either unlikely or of very minor importance in this study. Smith and Duff (1988) initially reported denitrification only, with no evidence of dissimilatory nitrate reduction to ammonia, in a shallow sand and gravel aquifer in Cape Cod, Massachusetts. There, the aquifer was contaminated by secondary-treated wastewater in which nitrate-N was 13 mg/L and organic carbon was 12 mg/L. Subsequent ¹⁵N studies on dissolved ammonia in the same aquifer confirmed dissimilatory nitrate reduction but concluded that it seemed to be only a minor sink for nitrate (Smith and others, 1991). At low organic carbon-to-nitrate ratios, denitrification is favored over dissimilatory nitrate reduction to ammonia (Tiedje and others, 1982). In fact, an important consideration is whether sufficient degradable carbon even exists in the wastewater at the study site to effect complete denitrification.

Experiments elsewhere indicate that soil organic matter is an ineffective long-term energy source to effect complete denitrification (Stewart and others, 1979). This is why addition of an organic carbon source to soils fertilized with inorganic nitrogen aids denitrification (Adelman and Spalding, Addition of natural and synthetic organic carbon to wastewater also has been shown to increase denitrification (Lance and Whisler, 1976; Lance and others, 1980; Rice and Bouwer, 1984; and Lance, 1986). From the results of soil-column experiments, Stewart and others (1979) concluded that wastewater is only slowly available to degradation by denitrification. However, such slow rates may not necessarily be a hindrance to denitrification at the study sites, where wastewater-transit velocities in the unsaturated zone are estimated to be 0.07-1 ft/d (table 15) and times to reach the water table at 150 ft range from almost 6 months to almost 6 years.

Experimental data indicate that an organic carbon-to-nitrate-N ratio close to 1 is needed to effect denitrification (McCarty and others, 1969; Stewart and others, 1979). This matches closely the stoichiometry of model reactions for denitrification of methanol (CH₃OH) and sugars (CH₂O)_n:

$$6NO_3^+ + 5CH_3OH + H^+ \rightarrow 3N_2 + 8H_2O + 5HCO_3^-$$
 (4)

$$4NO_3^- + 5(CH_2O) \rightarrow 2N_2$$

+ $H_2CO_3 + 2H_2O + 4HCO_3^-$. (5)

The average organic carbon-to-nitrogen mass ratio in wastewater calculated from data (tables 12 and 17) at four sites (Vasquez, Choctaw, Kiowa, and Cheyenne-II) is 0.65 (equivalent to a stoichiometric ratio of 0.76). The data suggest that wastewater at the study sites is at least somewhat deficient in the organic carbon needed for complete denitrification. The organic carbon deficit is even greater if analyses of samples

from lysimeters can be considered to be reliable indicators of bioavailable carbon. The few data available (table 10), principally from lysimeters at Cheyenne-I and Cajon, show that aqueous organic carbon concentrations at all depths are much lower than the dissolved organic carbon concentrations in wastewater itself (table 12). Furthermore, no depthrelated trend in concentration can be discerned. The result is that organic carbon-to-nitrate-N ratios are as low as 0.1 at relatively shallow depths where nitrate concentration is still high. However, caution is necessary in interpreting the significance of this result as it is not known whether a large fraction of the available organic carbon may be retained on particle surfaces or even on the ceramic lysimeter cup itself. At the Cape Cod aquifer contaminated by secondary wastewater cited earlier, denitrification was found to occur despite a decrease in dissolved organic carbon from 12 mg/L in the wastewater effluent to less than 2.5 mg/L in the contaminated ground water (Smith and Duff, 1988). Model calculations yielded 0.77 carbon atoms mineralized (oxidized to inorganic carbon) for each nitrate ion reduced by denitrification (Smith and others, 1991).

Whether sufficient organic carbon is available to effect complete denitrification becomes less important if autotrophs (chemlithotrophs) capable of using inorganic elements, rather than organic carbon, as an energy source (electron donor) are present. Mariotti and others (1988) and Böttcher and others (1990) cite evidence for denitrification in an aquifer mediated by the chemlithotrophic bacterium *Thiobacillus denitrificans* using sulfur in pyrite (FeS₂) as the electron donor according to the reaction:

$$14NO_{3}^{-} + 5FeS_{2} + 4H^{+} \rightarrow 7N_{2}$$

$$+10SO_{4}^{2-} + 5Fe^{2^{+}} + 2H_{2}O.$$
(6)

If both iron and sulfur act as electron donors, the reaction is represented by:

$$6NO_3^- + 2FeS_2 + 2H_2O \rightarrow 3N_2 + 2FeOOH + 4SO_4^{2-} + 2H^+.$$
 (7)

For a comprehensive discussion of both heterotrophic and autotrophic denitrification in ground water, the reader is referred to a recent review by Korom (1992).

In this study, an abundance of nitrate-reducing bacteria in the unsaturated zone at the Cheyenne-I and Cajon sites (table 9) and high oxygen levels (in soil gas at Cheyenne-I and in soil moisture at Cajon) were found despite experimental evidence that denitrification does not occur above even a very low oxygen threshold (Nakajimi and others, 1984, and Rönner and Sörensson, 1985). These results suggest the existence of microenvironments where oxygen is absent and denitrification can occur. The brownish coloration of nearly all recovered cores indicates a general absence of anaerobic (sulfidic) layers. However, a few exceptions (such as several feet of clay-rich, olive-gray soil near the water table at Cheyenne-I and Cheyenne-II) were found and these could be zones where denitrification, perhaps by chemlithotrophs, might occur.

Additional, indirect evidence for denitrification was sought from measurements of the ratio of nitrogen-15 to nitrogen-14 in nitrate. Applications and limitations of the method have been reviewed by Hübner (1986) and Mariotti (1986). Isotope ratios are expressed in the commonly used delta (δ) notation (Fritz and Fontes, 1980):

$$\delta^{15}N = [(R_{sample}/R_{standard}) - 1] \times 1,000,$$
 (8)

where R is the ratio of nitrogen-15 to nitrogen-14 in the sample and standard, and the standard is air (atmospheric nitrogen). Although denitrification is a complex multi-step reaction, isotopic fractionation accompanying denitrification has been found to follow the simple kinetics of a first-order, irreversible reaction (Mariotti and others, 1982) for which the approximate equation of a Rayleigh process is (Fritz and Fontes, 1980, and Létolle, 1980):

$$\delta^{15}N = \delta^{15}N_0 + \epsilon \ln[NO_3^-]/[NO_3^-]_0.$$
 (9)

This equation expresses the relation between isotopic composition of the residual nitrate ($\delta^{15}N$) and nitrate concentration [NO₃] at any time. The subscript "0" refers to the initial (time = 0) isotope ratio and nitrate concentration, and the constant ϵ is the isotopic-separation (enrichment) factor.

Isotopic fractionation during denitrification varies with environmental conditions and the type of bacterium. The largest value of ε reported for denitrification in a ground-water system is -30 ± 6 permil in the Kalahari Desert (Vogel and others, 1981, and Heaton and others, 1983). Böttcher and others (1990) measured an ε value of -15.9 permil in ground water beneath arable land where denitrification was carried out by chemlithotrophic bacteria, and an enrichment value of about -30 permil can be inferred from data

for shallow ground water beneath an irrigated field in the middle of the Imperial Valley (Schroeder and others, 1991). Denitrification, with an ε value of -13.9 permil, was reported in ground water from the shallow sand-and-gravel aquifer in Cape Cod (Smith and others, 1991), a site that has some important similarities to, as well as differences from, the Victor Valley study area. Disposal of secondary-treated sewage effluent having a nitrate-N concentration of 13 mg/L and a dissolved organic carbon concentration of 12 mg/L onto sand infiltration beds for more than 50 years has produced an extensive plume of contaminated ground water at the Cape Cod site. Despite these comparatively large enrichment factors, in most ground-water studies where denitrification has been proven, ε is reported to be only about -5 permil, which is much less than values measured in the laboratory (Mariotti and others, 1988) and in the few ground-water studies cited above. Some possible explanations for the low isotopic enrichment usually observed in nature are discussed by Mariotti and others (1988).

All nitrogen-isotope data initially obtained for this study from suction lysimeters (table 10) and monitoring wells (table 14) are reproduced in table 18. To ascertain isotopic evidence for denitrification, samples representing low nitrate concentrations were sought from the unsaturated zone. No completely unambiguous data were obtained, partly because of the difficulty in collecting a sufficiently large sample for analysis and partly because no samples were collected

Table 18. Nitrogen isotope data from selected suction lysimeters and monitoring wells, 1989–90

[Data taken from tables 10 and 14; ft, foot; mg/L, milligram per liter; mo/yr, month and year]

Site name	Depth (ft)	Date (mo/yr)	Nitrate (mg/L as N)	δ ¹⁵ N (per- mil)
	Suction	n lysimeters	3	
Cheyenne-I	37	7/89	32	8.7
Cheyenne-I	42	7/89	38	7.9
Cheyenne-I	63	7/89	31	8.7
Cheyenne-I	73	7/89	35	8.3
Cheyenne-I	92.5	7/89	32	7.8
Cajon	243	6/90	.8	7.1
		Wells		
Apple Ranchos	199	8/89	4.1	8.1
Rincon	233	8/89	1.0	5.3

in which wastewater was known to be present but at reduced concentrations. Ideally, the laboratory requires 5 mg nitrate as nitrogen; and, although isotopic analysis can be done on smaller quantities, the risk of contamination by atmospheric nitrogen during preparation of the sample for analysis increases. Composite samples were collected over a period as long as a month. All five samples from depths between 37 and 92.5 ft at Chevenne-I had a δ¹⁵N of about 8 permil. All these samples also contained high nitrate concentrations, and thus little or no shift in isotopic composition would be expected. In fact, these isotope ratios for nitrate are only a few permil less than published ratios for nitrogen in septic-tank wastewater itself (Martin, 1980, and Mariotti and others, 1988), a result that is consistent with fairly complete nitrification of wastewater in the unsaturated zone. Partial nitrification would lead to much greater depletion of ¹⁵N in the nitrate (Delwiche and Steyn, 1970).

On the basis of data obtained during the previous 13 months (table 10), it was expected that the July 1989 composite sample from the lysimeter at 92.5 ft at Cheyenne-I would contain low but sufficient nitrate for isotopic analysis. However, because the nitrate concentration was found to be anomalously high in comparison with previously collected samples from this depth, a sample from the lysimeter at 243 ft at the Cajon site was collected the following year for isotope analysis. Although the nitrate-N concentration of 0.8 mg/L is low, the sample shows no enrichment in ^{15}N ($\delta^{15}N = 7.1$ permil). If the decrease in concentration were due to denitrification, even the smallest published values for isotopic enrichment would predict a $\delta^{15}N$ of at least 20 permil. The apparent lack of ¹⁵N enrichment may indicate that this sample is from a depth that may have been below the water table (at least at times) although at the time of collection in June 1990 it was above the water table. If the sample from 243 ft at Cajon does, in fact, represent soil moisture derived from regional ground water rather than wastewater, it would not be a surprise that its isotopic composition is similar to that of ground-water samples from Apple Ranchos and Rincon (table 18). Whatever the source of the water in this lysimeter may be, it is clear from ongoing monitoring that it was not wastewater because wastewater had not yet reached this depth in 1993 (Schroeder and others, 1993).

One possible explanation for the nitrogen-isotope values observed in the study area is that the isotopic composition of nitrate is nearly the same in undenitrified wastewater from the unsaturated zone and in ground water where the nitrate is from natural sources

(prior to development). It then would be impossible to distinguish, on the basis of isotopes alone, between discharge to the ground water of completely denitrified wastewater (dilution of ground-water nitrate) or of undenitrified wastewater (mixing into low-nitrate ground water). If there were only partial denitrification, followed by the mixing of partially denitrified wastewater and ground water, both theory and the example discussed by Mariotti and others (1988)suggest that isotopic evidence for denitrification should exist.

Additional sampling is continuing, on a limited basis, to test for isotopic evidence of denitrification in the study area (table 19). Unfortunately, some lysimeters no longer operate (table 4) and one of the more important sites, Cheyenne-I, subsequently was covered by a concrete driveway. Samples are being collected from lysimeters at Cajon where the water table as of late 1991, when monitoring resumed, had declined below the piezometer at 266 ft (table 3) that lies beneath the series of eight lysimeters at this site (table 4). Although the coarseness of the soils at the Cajon site would seem to make it a less favorable environment for denitrification to occur than many other parts of Victor Valley, preliminary data on samples from the uppermost six lysimeters between 35 and 199 ft indicated isotopic enrichment with an ε value of about -10 permil on the basis of a δ^{15} N of 14.8 permil at the 199-ft lysimeter (Schroeder and Martin, 1992). The ¹⁵N enrichment is accompanied by a large increase in iron, sulfate, and free hydrogen ion (pH approximately 4) at this depth (Schroeder and others, 1993). These chemical changes seem to be similar to those from an example (Postma and others. 1991) and model (Engesgaard and Kipp, 1992) of aqueous chemical changes that accompany nitrate removal by pyrite oxidation in a ground-water system (denitrification by chemlithotrophs).

The changes that have occurred in specific conductance at the Cajon site between initial monitoring (1988-90) and the more recent monitoring (after 1991) provide ample evidence for the importance of maintaining monitoring in the unsaturated zone for a period perhaps as long as several years. The relative constancy in specific conductance for successive samples above 199 ft during the current sampling period (table 19) in comparison with the earlier period (table 7) that immediately followed installation of the lysimeter are notable.

The lysimeters were sampled as many as 11 times between November 5, 1991, and March 29, 1993. Selected data are given in table 19; additional data are given by Schroeder and others (1993). During this

Table 19. Specific conductance, concentrations of selected chemical constituents, and nitrogen-isotope ratios in samples from lysimeters at Cajon residential site, 1991–93

[Nitrogen and organic carbon concentrations from November 5, 1991; oxygen concentrations from April 22, 1992; and isotope data from November 13, 1991. ft, foot; µS/cm, microsiemen per centimeter at 25 degrees Celsius; --, no data]

Specific conductance (µS/cm)				Constituent concentration (mg/L)								
Depth (ft)	9-23 1991	11-05 1991	11-13 1991	2-13 1992	4-22 1992	3-29 1993	Nitrate as N	Ammo- nium, as N	Kjeldahl nitro- gen	Carbon, organic	Oxygen, dis- solved	δ ¹⁵ N, in nitrate permil)
35	585	462	472	478	473	448	28	0.03	0.5	2.9	3.7	10.5
70	755	491	485	486	525	435	27	.15	.7	3.4	4.5	9.5
97.5	547	517	493	491	488	468	34	.08	.4	3.0	4.4	8.2
130	617	590	547	540	525	470	38	.15	.8	4.2		7.8
160	588	547	564	567	555	493	36	.14	.7	3.5	6.1	7.8
199	468	391	395	401	418	535	18	.24	.4	2.1	5.0	14.8
243	487	274	248	285		264	.52	.04	.5	4.4	7.1	
257	358	1,017	1,329	1,013	1,003	1,088	.13	.05	.8	14		

period, specific conductance showed no trend (average unsigned difference of 4 percent between successive samples) in the five lysimeters above 199 ft and within the wastewater zone, and also showed no trend (average unsigned difference of 10 percent between successive samples) in the two lysimeters below 199 ft and beneath the advancing wastewater front. Concurrently, the specific conductance increased monotonically by almost 40 percent in the lysimeter at 199 ft during the same 1.5-year period, presumably as lower conductance soil moisture was being displaced by higher conductance wastewater (Schroeder and others, 1993).

The fact that the effect of sampling "artifacts" is much more pronounced and persists much longer for major ions than for nitrate strongly suggests that leaching of material used to backfill the drilled holes is the main source of contamination in early samples. With time, equilibration between the soil moisture (wastewater) and minerals that surround suction-lysimeter cup is reestablished as the readily soluble salts are leached from the backfill material. Monitoring is continuing at the Cajon site to determine when (if) the advancing wastewater reaches the lysimeter at 243 ft. The concrete driveway was removed and monitoring resumed at the Chevenne-I site in June 1993 to determine whether wastewater had reached the lowermost lysimeters at this site when monitoring was initially stopped in 1989. It is hoped that comparison of nitrogen-isotope data from both sites and in ground water will indicate whether isotope ratios can be used to distinguish wastewater nitrate from natural nitrate in the ground water.

TOTAL BACTERIA AND FECAL COLIFORMS

Wastewater contains a wide variety of pathogenic bacteria, viruses, protozoa, and worms. One published average biological characteristic for domestic wastewater is: total bacteria = $5.6-8\times10^7$ CFU (colonyforming units)/100 mL, total coliform = 2×10^6 MPN/100 mL, fecal coliform and fecal strep $tococci = 3 \times 10^4$ MPN/100 mL. and enteric viruses = 32-7,000 PFU (plaque-forming colonies)/L (Viraraghavan, 1976, and Siegrist, 1977). Other values for average total-bacteria and fecal-coliform densities that exceed the above values by a factor of about 10 also have been reported (Siegrist, 1977; Canter and Knox, 1985). These published values can be compared with measured ranges of 1.2×10^8 to 9.4×108 CFU/100 mL for total (heterotrophic) bacteria and 5.2×10^4 to 3.9×10^5 CFU/100 mL for fecal coliform in wastewater at five residences in the study area (table 13).

For this study, fecal coliforms were the only enteric microorganisms analyzed. Historically, fecal coliforms have been widely used as a reliable indicator of fecal contamination (Clark and Kabler, 1964). Persistence of other microorganisms in ground water, in comparison with *Escherichia coli*, has been reported to range from 0.02 to 3 times longer for seven common pathogenic bacteria and from 1.3 to 6 times longer for four viruses (Matthess and others, 1988). On the basis of these comparisons, the disappearance of fecal coliforms from soils only a short distance from the seepage pits in Victor Valley suggests that other pathogenic microorganisms also

would be unlikely to reach the water table given the long distance and traveltimes, although additional study on the movement and attenuation of viruses is needed.

Sinton (1986) found significant movement of fecal coliforms from seepage pits to ground water in a system with an experimental design similar to that of this study. However, the water table at that study site was only 3.5 m (11.5 ft) below the bottom of a seepage pit in a gravel aquifer in which downward percolation velocities exceeded 5 m/h (16 ft/h). Wherever silt and clay are present, as in this study area, removal of non-native bacteria and viruses generally requires less than 1 m (3 ft) of bulk soil that is free of channels or cracks (Brown and others, 1979, and Lance and Gerba, 1984). Physical straining (filtration) and adsorption (Canter and Knox, 1985) probably are the most important mechanisms of fecal coliform removal in the soils at Victor Valley. Additional factors that might favor rapid attenuation are competition with native bacteria for nutrients, antagonism from actinomycetes and other groups of bacteria such as Pseudomonas and Bacillus (Matthess and others, 1988), and an unsaturated (as opposed to saturated) flow regime below the seepage pits (Hagedorn and others, 1978, and Reneau, 1978).

Bacterial analyses were done on soils, rather than on water, because of the overwhelming predilection of bacteria for attachment to the solid rather than the aqueous phase in aquifers that contain even a smaller proportion of fine material (Harvey and others, 1984, and Smith and Duff, 1988) than is present in Victor Valley. Although percolating wastewater provides the medium for bacterial transport through the unsaturated zone, direct collection of aqueous samples for reliable analysis of bacteria is not possible because passage of the water through the small pore openings of the lysimeter's ceramic cup results in bacterial removal factors of 10^2 - 10^6 (Dazzo and Rothwell, 1974).

Total-bacteria densities as high as 10⁴ CFU/g were measured in core samples (table 8), but the significance of these findings to disposal of wastewater in Victor Valley is uncertain because the measurement does not distinguish between native and wastewater populations. The high numbers may be due to the growth of native bacteria on wastewater organic carbon. However, the general occurrence of high counts near the base of the seepage pits does suggest a wastewater component, and, if so, the nearly universal absence of measurable heterotrophic bacteria (assuming the standard-methods agar or broth used is appropriate to support growth in the laboratory) at greater depths (except below the water

table at Cheyenne-I) implies their effective removal in the unsaturated zone.

OTHER CONTAMINANTS IN WASTEWATER

Beginning about 1980, it was recognized that synthetic organic chemicals might exist in septic-tank effluent, and a few analyses have been done (Viraraghavan and Hashem, 1986, and references therein). Volatile (or purgeable) priority pollutants, which are commonly used solvents, and acidextractable priority pollutants, such as phenols, have chemical properties that are favorable for their transport, making them the trace organic constituents of greatest concern (Viraraghavan and Hashem, 1986). For this study, extractable organic compounds were analyzed on core samples and purgeable-plus-extractable organic compounds were analyzed on wastewater samples from five residential sites using gas chromatographic/mass spectrometric methods described by Wershaw and others (1987). The core samples analyzed were from 97 to 99 ft at Toltec, 22 to 24 ft at Cheyenne-I, 28 to 30 ft at Choctaw, 27 to 29 ft at Kiowa, and 32 to 34 ft at Cheyenne-II. With the exception of the background sample at Toltec, the depths selected for analysis are near the bottom of the seepage pit and therefore would be most likely to contain organic contaminants if they were present. The detection limit for most extractable priority pollutants was 200 µg/kg, and none were found in any of the five core samples.

The detection limit was 0.2 µg/L for most purgeable organic priority pollutants and 5 µg/L for most extractable organic priority pollutants analyzed in wastewater. Of 85 priority pollutants analyzed. 17 were detected in at least one of the six samples from five residential sites: however, their concentrations were generally low—except at Cheyenne-II, where wastewater from both the septic tank and seepage pit was analyzed (table 20). It is likely that the synthetic organic chemical concentrations in domestic wastewater are generally low, as was reported by Viraraghavan and Hashem (1986) from their analysis of 11 purgeable priority pollutants. Where comparatively high concentrations do occur in this study, they seem to be associated with inappropriate disposal practices that were unique to a particular site (Cheyenne-II).

In addition to the priority pollutants, other organic compounds were tentatively identified in wastewater from Choctaw and Cheyenne-II. Identification was by comparison of spectrums corresponding to gaschromatographic peak maximums against a comput-

Table 20. Organic priority pollutants detected in wastewater samples from septic tanks and seepage pits

[Concentrations in micrograms per liter; ND, not detected; --, not analyzed]

Organic priority		Seepage pits					
pollutant	Cheyenne-I ¹	Choctaw	Kiowa ²	Cheyenne-II	Vasquez	Cheyenne-II	
	P	urgeable prior	ity pollutants	3			
Chloroform		4.1	0.6	ND	ND	ND	
Toluene		9.3	ND	350	0.3	230	
Benzene		ND	ND	.2	ND	ND	
Chlorobenzene		ND	ND	.3	ND	ND	
Diethylphthalate		ND		ND	5.0	ND	
Ethylbenzene		ND	ND	2.2	ND	.3	
Methylene chloride		ND	ND	ND	ND	11	
Tetrachloroethylene		ND	ND	260	ND	170	
	E	xtractable prio	rity pollutant	ts			
1,2-Dichlorobenzene		ND	ND	120	ND	66	
1,4-Dichlorobenzene		ND	56	21	ND	ND	
Di-n-octylphthalate		13		ND	ND	12	
2,4-Dimethylphenol	ND	ND	ND	23	ND	29	
Phenol (C6H-50H)	ND	24	47	17	37	12	
Bis-2-ethylhexylphthalate		49		ND	32	ND	
Vinyl chloride		ND	ND	7.5	ND	ND	
Trichloroethylene		ND	ND	ND	ND	5.2	
Xylene		ND	ND	.7	ND	ND	

¹Analyzed for acid-extractable priority pollutants only.

erized library containing more than 70,000 reference spectrums. Several nonspecific acids and alcohols that probably are microbial degradation products of precursors commonly present in domestic wastewater were found. Concentrations of some specific compounds are given in table 21. Note the similarity of septic-tank and seepage-pit results at Cheyenne-II.

POTENTIAL FOR GROUND-WATER CONTAMINATION

As stated previously, there were more than 46,000 septic-tank systems in use in the study area in 1990. Wastewater discharge from these systems was estimated to be 9,000 acre-ft/yr, equal to about 18 percent of the natural recharge to the upper Mojave River Basin (see "Recharge and Discharge" section of this report). Because of the high concentrations of nitrogen and bacteria in septic-tank wastewater, recharge of the wastewater was expected to degrade the quality of the underlying ground water. This study showed that nitrogen and bacteria are

attenuated in the unsaturated zone. In addition, the low nitrate concentrations found in samples from shallow and deep ground water (tables 1 and 14) indicate the absence of widespread degradation of ground-water quality. In general, nitrate-N concentrations in ground water were less than 2 mg/L.

Shallow ground water was sampled just below the water table at three of the established sites (Chevenne-I. Choctaw, and Cajon). With the exception of one sample, nitrate-N concentrations were 3.1 mg/L or less, and most of the samples had concentrations less than 1 mg/L (table 14). The only sample that had a high (13 mg/L) nitrate-N concentration was collected from the suction lysimeter at 257 ft at the Cajon site on April 12, 1989 (table 14). All prior and subsequent samples from this suction lysimeter had low nitrate-N concentrations (3.1 mg/L or less). Other chemical constituents in the April 12, 1989, sample also were anomalous. This strongly suggests that this sample was mislabeled when collected and thus was from a different suction lysimeter than the one identified.

²Analyzed for purgeable and acid-extractable priority pollutants only.

Table 21. Extractable organic compounds, other than priority pollutants, tentatively identified in wastewater samples

[Estimated concentrations in microgram per liter. CAS No., a universal identification number for chemical compounds contained in the Chemical Abstracts Service register]

CAS No.	No. Compound				
	Septic tank at Choctaw				
107-92-6	Butanoic acid	220			
109-52-4	Pentanoic acid	410			
142-61-1	Hexanoic acid	410			
106-44-5	4-Methylphenol	700			
498-81-7	α , α , 4-Trimethyleyclo-				
	hexanemethanol	50			
74663-85-7	Nonylcyclopropane	130			
143-07-7	Dodecanoic acid	780			
112-72-8	1-Tetradecanol	490			
1002-84-2	Pentadecanoic acid	160			
57-11-4	Octadeconoic acid	1,200			
	Septic tank at Cheyenne-l	I			
108-88-3	Methylbenzene	40			
106-44-5	4-Methylphenol	270			
143-07-7	Dodecanoic acid	50			
58-08-2	Caffeine	100			
57-10-3	Hexadecanoic acid	420			
36653-82-4	1-Hexadecanol	50			
57-11-4	Octadecanoic acid	440			
	Seepage pit at Cheyenne-l	II			
108-88-3	Methylbenzene	40			
143-07-7	Dodecanoic acid	50			
4536-30-5	2-(Dodecyloxy)ethanol	110			
58-08-2	Caffeine	120			
2091-29-4	9-Hexadecenoic acid	110			
57-10-3	Hexadecanoic acid 460				
57-11-4	Octadecanoic acid 360				

To further investigate the effect of septic-tank wastewater on ground-water quality, two multiple-well monitoring sites were installed in the Apple Valley area (figs. 5 and 9). The first site (Apple Ranchos) was constructed in the center of Apple Valley in an area that is sewered (figs. 3 and 9). The second site (Rincon) was constructed about 2 mi west of the Apple Ranchos site, downgradient of numerous residences that use seepage pits to discharge septic-tank wastewater (figs. 3 and 9). The general direction of ground-water flow is from the Apple

Ranchos site toward the Rincon site. Each site includes three or four monitoring wells that enable sampling at depths between about 5 and 100 ft below the water table (table 3). The objective in sampling at several depths was to determine the importance of dilution by vertical mixing in the saturated zone. The two sites are in a part of Apple Valley where most of the houses were constructed in the early 1960's and where depth to the water table was about 150 to 180 ft at the time of the study (1988-90). On the basis of estimated rates for the movement of the wastewater wetting front determined for this study (0.07-1.0 ft/d, table 15), wastewater discharged to seepage pits in this area should have reached the water table many years ago. Both sites also are east of and sufficiently far from the Mojave River to receive little if any recharge from the river. The absence of river recharge is confirmed by differences in water chemistry between these wells and other wells near the river (fig. 8; table 1). Therefore, septic-tank wastewater is believed to constitute a significant source of recharge in this part of the study area.

Water-quality data collected from the multiplewell monitoring sites are presented in table 14. If undenitrified septic-tank wastewater were recharging the shallow ground-water system, one would expect higher nitrate concentrations in samples from wells closest to the water table and at the downgradient site (Rincon). Inspection of table 14 indicates that at both Ranchos Apple and Rincon. the nitrate-N concentrations of samples from the shallowest wells were less than or equal to the concentrations in samples from the deeper wells. Samples from the shallowest well at each site had nitrate-N concentrations less than 0.2 mg/L, and the highest nitrate-N concentrations, 2.0 to 4.1 mg/L, were in samples from the second-deepest well (199 ft) at the Apple Ranchos site. All nitrate-N concentrations in samples from the Rincon site were less than or equal to 1.0 mg/L, indicating no increase in nitrate concentration in a downgradient direction. The data collected from these sites indicate that either (1) a substantial fraction of the nitrogen in septic-tank wastewater is being removed in the unsaturated zone or in the saturated zone near the water table, (2) substantial dilution is occurring over a thick saturated zone, (3) the quantity of wastewater is small in comparison with the quantity of underlying ground water, or (4) the wastewater has not yet reached the water table near the monitoring sites.

A single-cell model that considers the main sources of water and nitrate to a part of the groundwater system was used to further evaluate the importance of dilution by vertical mixing with lownitrate ground water. This approach is similar to that used by Bauman and Schafer (1985), in which massbalance equations are developed for the water and nitrate in the system. Assumptions include an isotropic and homogeneous water-table aguifer, steadystate ground-water flow, and instantaneous mixing of nitrate. The purpose of the model is to illustrate the relative importance of differences in aquifer properties and nitrogen loading to changes in nitrate concentration in the ground-water system with time.

The region modeled is a 2-mile-long by 1-milewide block of the aquifer extending from the Apple Ranchos multiple-well monitoring site along a ground-water flow line toward the Mojave River. The total volume of ground water in the model block at any time, Q_{tot} , is calculated by multiplying the surface area of the block by the aquifer thickness and the porosity of the aquifer. For the purpose of this model, the aguifer thickness is assumed to equal the depth of vertical mixing of the septic-tank wastewater in the aquifer. Because of stratification in the aquifer system, the depth of vertical mixing will be much less than the aguifer thickness in most places. A verticalmixing depth of 50 ft was chosen for most model simulations. Porosity was assumed to be 30 percent. a value which probably is high for the entire aquifer as a whole and which therefore has the effect of understating the influence of wastewater on the ground water (overestimating dilution with ground water). A value of 2 mg/L was chosen to represent the initial nitrate-N concentration prior to any mixing with septic-tank wastewater.

Ground-water inflow enters the model block through the upgradient boundary, and inflow through the lateral boundaries of the model block was assumed to be zero because the model block lies along parallel ground-water flow lines. Septic-tank wastewater is the only other source of recharge, and ground-water inflow and septic-tank wastewater are assumed to mix instantaneously with the ground water in the aquifer. Ground-water outflow through the downgradient end of the model block is the only output from the system. Ground water removed from the system by pumping is assumed to be balanced by septic-tank wastewater recharge (consumptive use is considered negligible). Therefore, the nitrate concentration of the ground-water outflow consists of a mixture of the ground-water inflow, the septic-tank wastewater, and the underlying ground water.

The quantity of ground-water inflow at the upgradient boundary (Q_{in}) can be estimated using the following form of Darcy's law:

$$Q_{\rm in} = K \cdot b \cdot \frac{dh}{dl} \cdot w \cdot t , \qquad (10)$$

where

= quantity of ground-water inflow $[L^3]$;

= hydraulic conductivity [L/T];

b =aguifer thickness of vertical mixing depth

dh/dl = hydraulic gradient [L/L];

= width of the model block [L];

t = time period [T].

was estimated by dividing the reported transmissivity of the aquifer (20,000 ft²/d) (Hardt, 1971, fig. 8) by the saturated thickness of the Ouaternary and Tertiary deposits (1,000 ft) (fig. 6). The estimated value of K, 20 ft/d, probably is less than the actual values in the upper part of the saturated deposits and greater than actual values in the lower part of the aguifer. Therefore, model simulations were done using different chosen values of K (2, 20, and 200 ft/d) to evaluate the influence of this parameter on predicted nitrate concentrations. As stated previously, the vertical mixing depth (b) was assumed to be 50 ft for most of the model simulations. Model simulations also were made with smaller and greater mixing depths (10, 100, and 1,000 ft) to evaluate the influence of mixing depth on predicted nitrate concentrations. The hydraulic gradient was determined to be 0.0012 ft/ft on the basis of water-level measurements in the vicinity of the Apple Ranchos multiple-well monitoring site. The width of the aguifer block was previously defined as 5,280 ft. The time period (step) was set equal to 1 year (365.25 d). Nitrate-N concentrations for the groundwater inflow (N_{in}) were assumed, on the basis of available information, to be 2 mg/L.

The quantity of septic-tank wastewater (Q_{st}) mixing into the underlying ground water during any given time period was estimated—by assuming an average septic-tank discharge of 70 (gal/d)/person (Bookman-Edmonston Engineering, 1991) and 2.5 persons per household—to be 175 gal/d or 23 ft³/d per household. In most of the Victor Valley area, residential density ranges from 1 to 4 houses per acre. To evaluate the influence of housing density, densities of 1, 2, and 4 houses per acre were simulated in the model.

The nitrate-N concentration of the septic-tank wastewater (N_{st}) was chosen to be 50 mg/L, slightly higher than the 46 mg/L average dissolved-nitrogen concentration for wastewater from the five sites sampled for this study (table 17). It is assumed that

there are no losses of nitrogen after wastewater leaves the septic tank, and that all the nitrogen is entirely converted to nitrate. To evaluate the influence of lower nitrate concentrations in the wastewater and (or) denitrification of the wastewater, different concentrations of wastewater nitrate-N (50, 25, and 10 mg/L) were simulated in the model.

The quantity of underlying ground water (Q_{gw}) in the model block during any time period can be determined by subtracting Q_{in} and Q_{st} from Q_{tot} . As stated previously, the background nitrate-N concentration of the underlying ground water prior to mixing with septic-tank wastewater (N_{gw}) was assumed to be 2 mg/L. The nitrate-N concentration of the ground water after mixing with the septic-tank wastewater is determined in the model on a yearly basis for 100 years using the following equation:

$$N_{\rm gw}^{n+1} = \frac{1}{Q_{\rm tot}} \left(Q_{\rm in} * N_{\rm in} + Q_{\rm st} * N_{\rm st} + Q_{\rm gw} * N_{\rm gw}^{n} \right)$$

$$n = 0, 1, 2, \dots, 99,$$
(11)

where

n is the time step, in years, and all values of N and Q are in consistent units.

 $N_{\rm gw}$ on the right side of the equation is updated with the computed $N_{\rm gw}$ for the previous time step (the left side of the equation) for each successive yearly time step. Model results for each of the different simulations are presented in figure 14. The parameters used in the model, unless otherwise noted, are the same as those shown in table 22. The computed nitrate-N concentrations should be considered only as crude estimates, given the simplifying assumptions of the model.

The influence of changing porosity on the model-computed nitrate concentration is shown in figure 14A. Higher values of porosity result in lower computed nitrate concentrations during the early years before the concentrations reach a steady state. Model-computed concentrations are lower when the aquifer porosity is greater because initially a larger quantity of low-nitrate ground water is present in the underlying aquifer to dilute the septic-tank wastewater. Nevertheless, even the highest value of porosity simulated (30 percent) resulted in computed nitrate-N concentrations in excess of 10 mg/L in less than 20 years.

The influence of hydraulic conductivity and hydraulic gradient on model-computed nitrate concentrations is shown in figure 14B. Higher values of K result in increased ground-water inflow (see eq. 10) and therefore in lower computed concentrations. In-

Table 22. Parameters and values used in the model

[ft³/d, cubic foot per day; ft/d, foot per day; ft, foot; mg/L, milligram per liter]

	Model parameter	Parameter value
$Q_{\rm in}$	Quantity of ground-water inflow Hydraulic conductivity (K)	2,314,224 ft ³
	Hydraulic gradient (dh/dl)	0.0012 ft/ft
	Vertical mixing depth (b)	50 ft
	Aquifer width (w)	5,280 ft
N_{in}	Nitrate-N concentration of ground-water inflow	2 mg/L
Q_{st}	Quantity of septic-tank wastewater	10,939,968 ft ³
	Average septic-tank discharge	23.4 (ft ³ /d)/house
	Housing density	1 house/acre
	Number of acres in model area	1,280 acres
N_{st}	Nitrate-N concentration of septic-tank wastewater	50 mg/L
Q_{gw}	Quantity of underlying ground water	836,352,000 ft ³
	Aquifer length (l)	10,560 ft
	Aquifer width (d)	5,280 ft
	Vertical-mixing depth (b)	50 ft
	Aquifer porosity	30 percent
$N_{gw}^{n=0}$	Nitrate-N concentration of underlying ground water	2 mg/L

creasing the hydraulic gradient would have the same effect as increasing K (see eq. 10); that is, greater dilution with low-nitrate ground water. Again, the predicted nitrate-N concentration was in excess of 10 mg/L in less than 20 years, even when the effect of dilution was maximized by selecting a high value for K (200 ft/d).

The influence of different housing densities on model-computed nitrate concentrations is shown in figure 14C. Increasing the housing density results in a proportional increase in the quantity of septic-tank wastewater that recharges the underlying ground water. Even at 1 house per acre (the lowest housing density simulated), computed nitrate-N concentrations would exceed 10 mg/L in less than 20 years.

The influence of vertical-mixing depth is shown in figure 14D. Increases in the vertical-mixing depth result in lower model-computed nitrate concentrations

Figure 14. Influence of selected parameters on model-computed nitrate concentrations in ground water.

because (1) the quantity of groundwater inflow increases directly with increases in the vertical-mixing depth (eq. 1), and (2) the quantity of ground water initially available to mix with septic-tank wastewater increases directly with the verticalmixing depth. When a verticalmixing depth equal to the total saturated thickness of the aquifer (1,000 ft) was chosen, computed nitrate-N concentrations did not exceed 10 mg/L during the entire 100-year simulation period. However, for more realistic vertical-mixing depths of 100 ft and less, the computed nitrate-N concentrations exceeded 10 mg/L in less than 30 years, and measurable increases are simulated within 5 to 10 years.

The effect of reducing the septictank wastewater nitrate concentration is shown in figure 14E. The previous simulations all used a nitrate-N concentration of 50 mg/L for the septic-tank wastewater. In all these simulations, except when the mixingzone depth was in excess of 100 ft, the predicted nitrate-N concentrations exceeded 10 mg/L in less than 30 years. When the nitrate-N concentration of the wastewater is reduced to 25 mg/L (a 50-percent reduction), model-simulated nitrate-N concentrations do not exceed 10 mg/L for more than 30 years, assuming the best-estimate parameter values given in table 22. Reducing the nitrate-N concentration of the wastewater to 10 mg/L (an 80percent reduction) obviously results in predicted nitrate-N concentrations that do not exceed 10 mg/L during the entire simulation period.

The results of these model simulations indicate that if the vertical-mixing depth is 100 ft or less and if the values used for the other model parameters are reasonable (table 22), then the nitrate concentration of ground water in the Victor Valley area should be increasing at a

Figure 14--Continued.

readily discernible rate. The low nitrate concentrations measured in samples of ground water from the Victor Valley suggest that either nitrogen is being removed from the septic-tank wastewater, the vertical-mixing depth must be substantially greater than 100 ft, or a large percentage of the septic-tank wastewater has not yet reached the water table. Differences in several water-quality characteristics with depth at the Apple Ranchos and Rincon multiple-well monitoring sites (table 14) indicate that the vertical-mixing depth is less than 100 ft and thus support the contention that some nitrogen is being removed in the unsaturated zone or in the saturated zone near the water table in the study area.

In addition to providing indirect support for the existence of a nitrogen-removal process, the model simulations also imply that any temporal trends in ground-water degradation would be sufficiently slow that continued monitoring, especially in multiple-depth piezo-

meters distributed locally beneath seepage pits as well as regionally near the water table, can provide adequate early indication of possible degradation. Continued monitoring also is important to any further decisions on the need for sewering given the highly variable distribution of environments that favor denitrification and the absence of knowledge on their capacity to sustain denitrification and the uncertainty, therefore, inherent in quantifying wastewater-nitrate loading to the ground water on either a local or a regional scale.

The nitrate concentrations present in ground water underlying the study area are much lower than the that concentrations have been measured in other areas with high septic-tank densities: for example, Long Island, New York (Ku and Sulam, 1976); Delaware (Miller, 1975); southern Florida (Pitt and others, 1975); Fresno, California (Schmidt. 1972): and Arizona (Martin, 1980). A possible explanation for the low nitrate concentrations in this study area is that the unsaturated zone is much thicker than in most of those areas and wastewater movement is sufficiently slow to allow greater opportunity for attenuation of nitrogen in the unsaturated zone. If the were unsaturated zone thinner and (or) more permeable, wastewater-transit times through the unsaturated zone might be so rapid that attenuation would not occur. Another explanation for the observed low nitrate concentrations is that there are few domestic wells in the area at which possible faulty well construction could allow the septic-tank wastewater to "short circuit" the thick unsaturated zone and enter the aguifer. An unusual aspect of the upper Mojave River Basin, as a septic-tank area, is that virtually all the area is serviced by several principal water purveyors. These water purveyors distribute ground water pumped from large municipal supply wells by pipelines to individual residences. In most other septic-tank areas, there commonly is one well for each septic tank. The wells usually are small domestic wells that do not have to meet the same stringent construction standards that are applied to large municipal supply wells. Therefore, there are many more chances (in most other septic-tank areas) for faulty well construction (inadequate sanitary seals) or failed wells (corroded casings or leaking seals) to short circuit septic-tank wastewater directly to the water table.

In summary, the data collected for this study indicate that when the study was completed (except for limited continued monitoring) in 1990, septic-tank wastewater had not degraded ground-water quality in the upper Mojave River Basin. Septic-tank wastewater is a significant source of recharge to the ground-water system in the basin. If the entire area were sewered, this wastewater would be treated at a regional wastewater treatment plant and then likely would be discharged to the Mojave River east of the "Narrows" downgradient of the upper Mojave River Basin. This source of recharge then would be exported from the study area, creating a larger imbalance between recharge and discharge; this imbalance would result in water-level declines that are greater than would otherwise occur. Of course, if wastewater were no longer discharged from seepage pits, any contaminants in wastewater still present in the unsaturated zone would simply remain there and would no longer be transported to the water table.

SUMMARY AND CONCLUSIONS

Septic-tank wastewater disposed in seepage pits at 46,000 residences in the rapidly developing upper Mojave River Basin (Victor Valley) northeast of Los Angeles is estimated to equal about 18 percent of the natural recharge to the underlying aquifer. However, this wastewater-disposal practice has led to concern about possible contamination, especially by nitrate, of the sole-source aquifer that underlies the area. To respond to this concern, the U.S. Geological Survey began a study in 1988 to (1) determine vertical rate of wastewater movement through the unsaturated zone. (2) determine whether constituents in wastewater reach the water table, and (3) evaluate the current and potential effects of wastewater discharge on ground-water quality. The study entailed monitoring wastewater movement and water-quality changes in the unsaturated zone at eight residences and determining regional ground-water quality in multipledepth piezometers near the water table at two locations.

Disposal of domestic wastewater is achieved by discharge of septic-tank effluent to seepage pits (30-foot-deep dry wells) from which the wastewater percolates into the unsaturated zone below a near-surface caliche layer that extends throughout most of the Victor Valley. Movement of the wastewater was observed by means of periodic neutron logging and periodic sampling of suction lysimeters beneath the seepage pits. Water-quality changes in the unsaturated zone were determined by analysis of suction-lysimeter samples and by extraction of soil cores. Bacteria in the unsaturated zone were analyzed from soil cores. The eight residential sites that were studied were selected to represent the range in geohydrologic environments that prevail in the Victor Valley. The sites included three newly occupied residences as well as other residences whose disposal systems had been in use for as long as 10 years. Six were single-family residences and two were multiple-family residences. The interpretation of results from this study area was less complicated than for many other published investigations of septic-tank effects because of (1) the absence of other nitrogen sources in this desert environment (agricultural areas adjacent to the Mojave River channel were avoided) where landscaping is minimal, and (2) the presence of only a few large municipal-supply wells rather than numerous individual-homeowner wells.

The measured vertical rate of the wastewater wetting front ranged from 0.07 to 1.0 foot per day. indicating that the wastewater wetting front reaches the water table, at an average depth of 150 feet in the study area, in about 6 years and about 6 months. respectively. The time for the wastewater to reach the water table would be longer. Although there is evidence of lateral wastewater movement, these vertical rates imply that wastewater from many of the disposal systems in Victor Valley already has reached the water table. Therefore, the absence of widespread high nitrate concentrations in ground water near the water table indicates that either a significant fraction of the nitrogen present in wastewater is no longer present when it mixes into the ground water, or the nitrate is confined to shallow depths below the water table that have not been sampled. Denitrification in the unsaturated zone and (or) at the water table beneath disposal systems seems to be a possible mechanism of nitrogen removal. Another mechanism is dilution by vertical mixing with low-nitrate ground water in a thick unsaturated zone.

Concentrations of total dissolved nitrogen in wastewater ranged from 22 to 63 milligrams per liter and averaged 46 milligrams per liter. The nitrogen

was present in reduced form as ammonium and as organic nitrogen. Dissolved organic carbon concentrations in wastewater ranged from 10 to 63 milligrams per liter. All concentrations are within the expected range for domestic wastewater, and the differences between residences probably are related to the way its occupants use the water and to the quantities they use.

The reduced nitrogen present in wastewater is oxidized, presumably by nitrifying bacteria, in the soil zone close to the seepage pit. Accordingly, maximum median nitrate-N concentration in lysimeter samples ranged from 6.4 to 43 milligrams per liter, and the highest concentrations usually occurred in a shallow lysimeter only a short distance below the seepage pit. For the five established sites, the dissolved-nitrogen concentration averaged 27 milligrams per liter, about 40 percent less than the averaged nitrogen concentration in septic-tank wastewater at the same site. The results of this study indicate a significant removal of nitrogen in the seepage pit and (or) in the soil immediately adjacent to the seepage pit. Further declines in nitrate concentration and nitrate-to-chloride ratios were observed with increasing depth, and these decreases seemed to coincide with the presence of finer soils and with the presence of nitrate-respiring bacteria identified in soils from the two sites where these bacterial analyses were done. However, more recent results suggest the possibility that low nitrate concentrations in deeper parts of the unsaturated zone could be due to the fact that wastewater had not yet arrived at these depths during the initial period of monitoring before 1990 at the Chevenne-I and Cajon sites. Monitoring is continuing at both sites.

The precise reduction in nitrate concentration of wastewater as it recharges at the water table is difficult to ascertain because of variability in concentration among multiple sample collections; a temporal trend toward steady-state conditions only after numerous successive samplings; nonideal selection of depth for installation of the deepest lysimeter (which can be related to uncertainty and fluctuations in depth to water table); and the inherent limitations on obtaining representative water-quality samples from an unsaturated zone using suction lysimeters. At one of the residential study sites, Cajon, a decrease of approximately 50 percent in nitrate concentration was found at the deepest in a series of six lysimeters between 35 and 199 feet, the deepest of which still is well above a declining water table that was at least 266 feet below land surface in late 1991. Incomplete results from ongoing sampling of the lysimeters at this site indicate that the reduction in nitrate concentration is accompanied by an apparent isotopic fractionation (enrichment of ¹⁵N at the lower nitrate concentration at 199 feet) factor of about -10 permil and that the reaction may be mediated by autotrophs (chemlithotrophs). Enrichment in ¹⁵N in the residual nitrate, and absence of widespread high levels of nitrate in the regional ground water and in ground water near the water table provide evidence for at least partial removal of nitrogen in wastewater recharge by denitrification. However, the significance of this reaction throughout the study area, and the capacity to sustain the reaction for a long period of time, cannot be evaluated.

Although fecal-coliform densities ranged from about 5×10^4 to 4×10^5 colony-forming units per 100 milliliters in the wastewater itself, fecal coliforms never were detected in any soil samples analyzed, including those only a few feet away from the seepage pits. Comparison of published transport properties for other microorganisms with those of fecal coliform suggests that various other pathogenic bacteria and viruses that might be present in domestic wastewater also are unlikely to persist a great distance from the seepage pits.

Of 85 organic priority pollutants analyzed, 17 were detected in domestic wastewater, mostly at low concentrations. At one site (Cheyenne-II), concentrations were high—but the high concentrations are believed to be a consequence of disposal practices unique to this particular residence. Concentrations of toluene, tetrachloroethylene, and 1,2-dichlorobenzene approached or exceeded 100 micrograms per liter in both the septic tank and the seepage pit at this site. No extractable priority pollutants were detected in soils adjacent to the seepage pit at this site or at three other sites.

About one-quarter of all inhabitants of the United States dispose of sewage by means of onsite septic systems that have the potential to contaminate the receiving waters. The main cause of failure of these systems has been variously reported to be poor operation and maintenance, unsuitable soils, and excessive septic-tank density. Although conditions exist locally at some residences and regionally in some parts of the upper Mojave River Basin, results of this study show that current onsite domestic-wastewater disposal practices pose little immediate threat to the local ground-water resource. Continued monitoring in the unsaturated zone and in wells perforated just below the water table could provide adequate warning of any future ground-water degradation, which model simulations indicate can occur only over a period of many years. Although discontinuance of current domestic-disposal practices in favor of a municipal treatment plant would eliminate any further transport of contaminants through the unsaturated zone, it also would result in greater water-level declines if this source of recharge were exported from the area.

References Cited

- Adelman, D.D., and Spalding, R.F., 1988, The economic feasibility of using ethanol to accelerate groundwater denitrification, in Proceedings on Planning Now for Irrigation and Drainage: Irrigation Division, American Society of Civil Engineers, Lincoln, Nebraska, July 19-21, 1988, p. 206-213.
- American Society for Testing and Materials, 1988, Soil and rock, building stone; geotextiles: Annual Book of ASTM Standards, section 4, v. 04.08, Library of Congress catalogue card no. 83-641658.
- Bartholomew, W.V., and Clark, F.E., eds., 1965, Soil nitrogen: American Society of Agronomy, Inc., Madison, Wisconsin: Agronomy Monograph 10, 615 p.
- Bauman, B.J., and Schafer, W.M., 1985, Estimating ground-water quality impacts from on-site sewage treatment systems, in Proceedings of the Fourth National Symposium on Individual and Small Community Sewage Systems: American Society of Agricultural Engineers, New Orleans, Louisiana, December 10-11, 1984, p. 285-294.
- Bookman-Edmonston Engineering, Inc., 1991, Investigation for the establishment of zones of benefit: draft consultant report prepared for Mojave Water Association, Glendale, California, 34 p.
- Bouwer, Herman, 1978, Groundwater Hydrology: New York, McGraw-Hill, 480 p.
- Böttcher, J., Strebel, O., Voerkelius, Susanne, and Schmidt, H.-L., 1990, Using isotope fractionation of nitratenitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer: Journal of Hydrology, v. 114, p. 413-424.
- Boyle, W.C., and Otis, R.J., 1979, On-site alternatives for treatment and disposal: Journal of the Water Pollution Control Federation, v. 51, p. 1223-1229.
- Britton, L.J., and Greeson, P.E., eds., 1987, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 363 p.
- Broadbent, F.E., and Clark, F.E., 1965, Denitrification, in Bartholomew, W.V., and Clark, F.E., eds., Soil nitrogen: American Society of Agronomy, Inc., Madison, Wisconsin, Agronomy Monograph 10, p. 344-359.
- Brown, K.W., Wolf, H.W., Donnelly, K.C., and Slowey, J.F., 1979, The movement of fecal coliforms and coliphages below septic lines: Journal Environmental Quality, v. 8, p. 121-125.

- California Department of Water Resources, 1967, Mojave River ground water basins investigation: Bulletin No. 84, 151 p., 9 pls. in pocket.
- Canter, L.W., and Knox, R.C., 1985, Septic tank system effects on ground water quality: Chelsea, Michigan, Lewis Publishers, Inc., 336 p.
- Clark, H.F., and Kabler, P.W., 1964, Reevaluation of the significance of the coliform bacteria: Journal of the American Water Works Association. p. 931-936.
- Dazzo, F.B., and Rothwell, D.F., 1974, Evaluation of porcelain cup water samplers for bacterial samplings: Applied Microbiology, v. 27, p. 1172–1174.
- Delwiche, C.C., and Steyn, P.L., 1970, Nitrogen isotope fractionation in soils and microbial reactions: Environmental Science and Technology, v. 4, p. 929-935.
- Duda, A.M., and Cromartie, K.D., 1982, Coastal pollution from septic tank drainfields: American Society of Civil Engineers, Journal of the Environmental Engineering Division, v. 108, p. 1265-1279.
- Engesgaard, Peter, and Kipp, K.L., 1992, A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite: Water Resources Research, v. 28, p. 2829-2843.
- Feltz, H.R., Duncan, S.S., and Zepp, Ann, eds., 1985, National Water-Quality Laboratory 1986-87-88 services catalog: U.S. Geological Survey Open-File Report 86-232, 5 parts.
- Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 545 p.
- Fritz, P., and Fontes, J.Ch., 1980, Introduction, in Fritz, P., and Fontes, J.Ch., eds., Handbook of Environmental Geochemistry, v. 1, The Terrestrial Environment, A: Elsevier, New York, Chapter 1, p. 1-19.
- Ghuman, B.S., and Prihar, S.S. 1980, Chloride displacement by water in homogeneous columns of three soils: Soil Science Society of America Journal, v. 44, p. 17–21.
- Hagedorn, C., Hansen, D.T., and Simonson, G.H., 1978, Survival and movement of fecal indicator bacteria in soil under conditions of saturated flow: Journal of Environmental Quality, v. 7, p. 55-59.
- Hardt, W.F., 1971, Hydrologic analysis of Mojave River basin, California, using electric analog model: U.S. Geological Survey Open-File Report [71-157], 84 p.
- Harvey, R.W., Smith, R.L., and George, L., 1984, Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer: Applied and Environmental Microbiology, v. 48, p. 1197-1202.
- Heaton, T.H.E., Talma, A.S., and Vogel, J.C., 1983, Origin and history of nitrate in confined ground waters in the western Kalahari: Journal of Hydrology, v. 62, p. 243-262.

- Hillel, D., 1971, Soil and water: physical principles and processes: New York, Academic Press, 288 p.
- Hübner, H., 1986, Isotope effects of nitrogen in the soil and biosphere, chapter 9, in Fritz, P. and Fontes, J.Ch., eds.: Handbook of Environmental Isotope Geochemistry, v. 2, The Terrestrial Environment, B: New York, Elsevier, p. 361-425.
- John S. Murk Engineering, Inc., and LeRoy Crandall and Associates, 1985, Historic and present conditions upper Mojave River basin: Consulting report for the Mojave Water Agency, 51 p.
- Khanbilvardi, R.N., and Long, D.A., 1985, Effect of soil depth on wastewater renovation: Journal of Environmental Health, v. 47, p. 184-188.
- Korom, S.F., 1992, Natural denitrification in the saturated zone: a review: Water Resources Research, v. 28, p. 1657-1668.
- Ku, H.F.H. and Sulam, D.J., 1976, Distribution and trend of nitrate, chloride and total solids in water in the Magothy aquifer in southeast Nassau County, New York, from the 1950's through 1973: U.S. Geological Survey Water-Resources Investigations Report 76-44, 47 p.
- Lance, J.C., 1986, Effect of sludge additions on nitrogen removal in soil columns flooded with secondary effluent: Journal of Environmental Quality, v. 15, 298-301.
- Lance, J.C., and Gerba, C.P., 1984, Virus movement in soil during saturated and unsaturated flow: Applied and Environmental Microbiology, v. 47, p. 335–337.
- Lance, J.C., and Whisler, F.D., 1976, Stimulation of denitrification in soil columns by adding organic carbon to wastewater: Journal of the Water Pollution Control Federation, v. 48, p. 346–356.
- Lance, J.C. Rice, R.C., and Gilbert, R.G., 1980, Renovation of wastewater by soil columns flooded with primary effluent: Journal of the Water Pollution Control Federation, v. 52, p. 381–388.
- Létolle, René, 1980, Nitrogen-15 in the natural environment, in Fritz, P., and Fontes, J.Ch., eds., Handbook of Environmental Isotope Geochemistry, v. 1, The Terrestrial Environment, A: New York, Elsevier, p. 407–433.
- Mariotti, André, 1986, La dénitrification dans les eaux souterraines, principes et méthodes de son identification: une revue: Journal of Hydrology, v. 88, p. 1–23.
- Mariotti, André, Germon, J.C., and Leclere, A., 1982, Nitrogen isotope fractionation associated with the NO₂ →N₂O step of denitrification in soils: Canadian Journal of Soil Science, v. 62, p. 227–241.
- Mariotti, André, Landreau, Alain, and Simon, Béatrice, 1988, ¹⁵N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France: Geochimica et Cosmochimica Acta, v. 52, p. 1869-1878.
- Martin, Peter, 1980, Evaluation of ground-water quality in the Cortaro area, Arizona: Tucson, University of Arizona, unpublished M.S. thesis, 99 p.

- Matthess, G., Pekdeger, A., and Schroeter, J., 1988, Persistence and transport of bacteria and viruses in groundwater—a conceptual evaluation: Journal of Contaminant Hydrology, v. 2, p. 171-188.
- McCarty, P.L., Beck, L.A., and St. Amant, P.O., 1969, Biological denitrification of wastewaters by addition of organic materials, *in* Proceedings of the 24th Annual Purdue Industrial Waste Conference, Lafayette, Indiana, p. 1271-1285.
- Miller, J.C., 1975, Nitrate contamination of the water-table aquifer by septic tank systems in the Coastal Plain of Delaware, *in* Jewell, W.J. and Swand, R., eds., Water pollution control in low density areas: Hanover, N.H., University Press of New England, p. 121-133.
- Nakajima, M., Hayamizu, T., and Nishimura, H., 1984, Effect of oxygen concentration on the rates of denitrification and denitrification in the sediments of an eutrophic lake: Water Research, v. 18, p. 335-338.
- National Oceanic and Atmospheric Administration, 1989, Climatological data--California: v. 93, nos. 1-13.
- National Research Council, 1978, Nitrates: An environmental assessment: Washington, D.C., National Academy of Sciences, 723 p.
- Nightingale, H.I., and McCormick, R.L., 1985, Chemical quality of perched septic tank effluent for plant use and recharge: Journal of the Water Pollution Control Federation, v. 57, p. 916-920.
- Parizek, R.R., and Lane, B.E., 1970, Soil-water sampling using pan and deep pressure-vacuum lysimeters: Journal of Hydrology, v. 11, p. 1-21.
- Peters, C.A., and Healy, R.W., 1988, The representativeness of pore water samples collected from the unsaturated zone using pressure-vacuum lysimeters: Ground-Water Monitoring Review, v. 8., p. 96-101.
- Pitt, W.A., Jr., Mattraw, H.C., Jr., and Klein, H., 1975, Ground-water quality in selected areas serviced by septic tanks, Dade County, Florida: U.S. Geological Survey Open-File Report 75-607, 82 p.
- Postma, D., Boesen, C., Kristiansen, H., and Larsen, F., 1991, Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling: Water Resources Research, v. 27, p. 2027–2045.
- Reneau, R.B., Jr., 1978, Influence of artificial drainage on penetration of coliform bacteria from septic tank effluents into wet tiled drain soils: Journal of Environmental Quality, v. 7, p. 23-30.
- Rice, R.C., and Bouwer, H., 1984, Soil-aquifer treatment using primary effluent: Journal of the Water Pollution Control Federation, v. 56, p. 84-90.
- Rönner, U., and Sörensson, F., 1985, Denitrification rates in the low-oxygen waters of the stratified Baltic Proper: Applied Environmental Microbiology, v. 50, p. 801-806.
- San Bernardino County Planning Department, 1979, San Bernardino County general plan, land use, Victorville: 1 map.

- Schmidt, K.D., 1972, Nitrate in ground water of the Fresno-Clovis metropolitan area, California: Ground Water, v. 10, p. 50-61.
- Schroeder, R.A., and Martin, Peter, 1992, Nitrogen attenuation during transport of domestic wastewater through a thick unsaturated zone in the Mojave Desert: EOS, Transactions of the American Geophysical Union, Abstract, v. 73, no. 43, p. 209.
- Schroeder, R.A., Martin, Peter, and Böhlke, J.K., 1993, Chemical, isotopic, and microbiological evidence for denitrification during transport of domestic wastewater through a thick unsaturated zone in the Mojave Desert, San Bernardino County, California: U.S. Geological Survey Open-File Report 93–414, 11 p.
- Schroeder, R.A., Setmire, J.G., and Densmore, J.N., 1991, Use of stable isotopes, tritium, soluble salts, and redox-sensitive elements to distinguish ground water from irrigation water in the Salton Sea basin, *in* Ritter, W.F., ed., Proceedings of National Conference, Irrigation and Drainage Division, American Society of Civil Engineers, Honolulu, Hawaii, July 22-26, 1991, p. 524-530.
- Siegrist, R., 1977, Waste segregation as a means of enhancing onsite wastewater management: Journal of Environmental Health, v. 40, p. 5-8.
- Sinton, L.W., 1986, Microbial contamination of alluvial gravel aquifers by septic tank effluent: Water, Air, and Soil Pollution, v. 28, p. 407–425.
- Slichter, C.S., 1905, Field measurements of the rate of movement of underground waters: U.S. Geological Survey Water-Supply and Irrigation Paper 140, 64 p.
- Smith, R.L., and Duff, J.H., 1988, Denitrification in a sand and gravel aquifer: Applied and Environmental Microbiology, v. 54, p. 1071-1078.
- Smith, R.L., Howes, B.L., and Duff, J.H., 1991, Denitrification in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients: Geochimica et Cosmochimica Acta, v. 55, p. 1815-1825.
- Steenhuis, T.S., Selker, J.S., Bell, Jennifer, Kung, K-J.S., and Farlange, J-Y., 1991, Effects of soil layering on infiltration, in Ritter, W.F., ed., Proceedings of National Conference, Irrigation and Drainage Division, American Society of Civil Engineers, Honolulu, Hawaii, July 22-26, 1991, p. 74-80.
- Stewart, L.W., Carlile, B.L., and Cassel, D.K., 1979, An evaluation of alternative simulated treatments of septic tank effluent: Journal of Environmental Quality, v. 8, p. 397-403.
- Stiff, H.A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Journal of Petroleum Technology, v. 3, no. 10, p. 15-17.

- Subsurface Surveys, Inc., 1990, Inventory of groundwater stored in the Mojave River basins: final consultant report prepared for Mojave Water Agency, Solana Beach, California, 47 p.
- Tiedje, J.M., Sexstone, A.J., Myrold, D.D., and Robinson, J.A., 1982, Denitrification: ecological niches, competition, and survival: Antonie van Leeuwenhoek Journal of Microbiology and Serology, v. 48, p. 569-583.
- Troxler Electronic Laboratories, Inc., 1983, Instruction manual, depth moisture gages, Research Triangle Park, N.C., 55 p.
- U.S. Environmental Protection Agency, 1976, Quality criteria for water: Washington, D.C., U.S. Environmental Protection Agency, 256 p.
- Viraraghavan, T., 1976, Septic tank efficiency: American Society of Civil Engineering Journal of the Environmental Engineering Division, v. 102, p. 505-508.
- _____1986, The future of onsite wastewater systems: Biocycle, v. 27, p. 44–45.
- Viraraghavan, T., and Hashem, Simon, 1986, Trace organics in septic tank effluent: Water, Air, and Soil Pollution, v. 28, p. 299–308.
- Vogel, J.C., Talma, A.S., and Heaton, T.H.E., 1981, Gaseous nitrogen as evidence for denitrification in groundwater: Journal of Hydrology, v. 50, p. 191-200.
- Walker, W.G., Bouma, J., Keeney, D.R., and Magdoff, F.R., 1973a, Nitrogen transformation during subsurface disposal of septic tank effluent in sands: I. Soil transformations: Journal of Environmental Quality, v. 2, p. 475–480.
- Walker, W.G., Bouma, J., Keeney, D.R., and Olcott, P.G., 1973b, Nitrogen transformation during subsurface disposal of septic tank effluent in sands: II. Ground water quality: Journal of Environmental Quality, v. 2, p. 521-525.
- Warrick, A.W., Biggar, J.W., and Nielsen, D.R., 1971, Simultaneous solute and water transfer in an unsaturated soil: Water Resources Research, v. 7, p. 1216-1225.
- Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., eds, 1987, Methods for the determination of organic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 80 p.
- Yates, M.F., 1985, Septic tank density and ground-water contamination: Ground Water, v. 23, p. 586-591.
- Young, M.H., Wieranga, P.J., Hills, R.G., and Vinson, J., 1992, Evidence of piston flow in two large-scale field experiments, Las Cruces trench site: Eos, Transactions of the American Geophysical Union, v. 73, no. 43, p. 156.